
var tim = Position(company: nil title: nil)

Is AI going to take over
your job?

Tim Standing

https://www.nytimes.com/2025/02/27/technology/personaltech/vibecoding-ai-software-programming.html

I’m not a
programmer. But

I’ve been creating my
own software tools

with help from
artificial intelligence.

https://www.nytimes.com/2025/02/27/technology/personaltech/vibecoding-ai-software-programming.html

https://www.nytimes.com/2025/08/10/technology/coding-ai-jobs-students.html

https://www.nytimes.com/2025/08/10/technology/coding-ai-jobs-students.html

https://www.nytimes.com/2025/07/07/business/ai-job-cuts.html

“How you decrease cost is
not by firing the cheapest
employees you have,” Mr.
Reed said. “You take the
cheapest employee and

make them worth the
expensive employee.”

Harper Reed, Founder, 2389
Research

https://www.nytimes.com/2025/07/07/business/ai-job-cuts.html

https://www.nytimes.com/2025/07/02/technology/microsoft-layoffs-ai.html

https://www.nytimes.com/2025/07/02/technology/microsoft-layoffs-ai.html

https://www.theverge.com/2024/10/29/24282757/google-new-code-generated-ai-q3-2024

“More than a quarter of all new code at Google is
generated by AI, then reviewed and accepted by

engineers,”

CEO Sundar Pichai said on the company’s third
quarter 2024 earnings call.

https://www.theverge.com/2024/10/29/24282757/google-new-code-generated-ai-q3-2024
https://blog.google/inside-google/message-ceo/alphabet-earnings-q3-2024/

https://www.businessinsider.com/microsoft-cto-ai-generated-code-software-developer-job-change-2025-4

Kevin Scott,
CTO of Microsoft,

expects 95 percent
of code to be AI-
generated in the
next five years.

https://www.businessinsider.com/microsoft-cto-ai-generated-code-software-developer-job-change-2025-4

Task:
Multithreaded Python tool

to certify disks

Single thread
certifying 3 disks

write disk0 read disk0 write disk1 read disk1 write disk2 read disk2

Time (minutes)

CPU 0

CPU 1

CPU 2

CPU 3

0 25 75 100 125 150 175 200 225 250 275

Multiple threads
certifying 3 disks

write disk0 read disk0CPU 0

CPU 1

CPU 2

CPU 3

write disk1 read disk1

write disk2 read disk2

Time (minutes)
0 25 75 100 125 150 175 200 225 250 275

Certifying Disks with SoftRAID

Certifying Disks with SoftRAID

OWC Elektron (USB 3.2)

Using claude.ai

Prompt:
Write a python3 script which opens a raw disk, writes a
random pattern to all bytes on the disk and then reads all
bytes and verifies that they are correct.

Error - unterminated string

Error - missing “#!” string

Error - can’t detect disk size

“Total Size” = macOS 10.12 and earlier, “Disk Size” macOS 10.13 and later

Other Errors

• Does not accept more than one disk

• Poor performance, 3 MB/s

• Poor performance, 140 MB/s

• Disappearing disk causes tool to hang

• No errors are ever reported (read, write or invalid data)

Prompt:
Add the ability to write and verify more than 1 disk at a
time. All disks should be accessed in parallel.

Reintroduced Errors

• Unterminated string

• Missing “#!” on first line

• Tool does not accept multiple disks

Final Output:

Problem with resetting terminal:

Reset terminal:

Move cursor:

print(f"\033[2J\033[H")

print(f"\033[{lines_to_move}A", end="")

Problems with AI generated code

• Uses Terminal reset

• Gigantic i/o size - 256 MB

• i/o continues after tool is terminated

• Command line parser does not work

• Disappearing disk causes tool to hang

• No errors are ever reported (read, write or invalid data)

Göteborg Art Museum

Anders Zorn
Göthilda & Pontus Fürstenberg

1898

Anders Zorn
Night Effect

1885

Richard Berg
The Artist’s Wife

1886

Peder Severin Kpoyer
Hipp, Hipp, Hurrah! Artists’ Party, Skagen

1887-8

Albert Edel Felt
At Sea
1883

Nils Kreuger
Spring Ploughing

1884

Erik Werenskiold
Ray of Sunlight

1891

Advice on using AI for code generation
from 3 software engineers

https://www.businessinsider.com/microsoft-cto-ai-generated-code-software-developer-job-change-2025-4

Kevin Scott,
CTO of Microsoft,

expects 95 percent
of code to be AI-
generated in the
next five years.

https://www.businessinsider.com/microsoft-cto-ai-generated-code-software-developer-job-change-2025-4

https://www.youtube.com/watch?v=KN7KYzpPfiU

20VC Podcast (March 31, 2025)

https://www.youtube.com/watch?v=KN7KYzpPfiU

20VC Podcast (March 31, 2025)

https://www.youtube.com/watch?v=KN7KYzpPfiU

https://www.youtube.com/watch?v=KN7KYzpPfiU

Steps for creating code:

1) Create main() and check input parameters
2) Create Disk class and provide __init__ function
3) Add write_pattern() method to Disk class
4) Add read_pattern() method to Disk class
5) Add test_disk() method to Disk class
6) Create a separate thread for each Disk object
7) Monitor progress of each Disk object

Steps for creating code:

0) Give Claude an background and an objective
1) Create main() and check input parameters
2) Create Disk class and provide __init__ function
3) Add write_pattern() method to Disk class
4) Add read_pattern() method to Disk class
5) Add test_disk() method to Disk class
6) Create a separate thread for each Disk object
7) Monitor progress of each Disk object

Prompt: Step 0 - background and an objective)
We are writing a Python 3 script, called "cert_disk", which
will write out a pattern to every sector of a disk and then
reach back each sector and make sure the pattern is
correct. It will take as parameters one or more bsd disk
names.

This script will be used by test engineers and must have
detailed progress information and error messages. It will be
invoked in a Terminal window on macOS by just calling the
command, e.g. "cert_disk disk1”.

Do not add any code to this script until I ask you to do so.

Create a python script which accepts 1 or more parameters
which are bsd disk names as strings which either start with
"disk" or "/dev/rdisk". If any of the input parameters don't
start with these strings, print out an error message and exit
with an error.

Prompt: Step 1 - create main(), check parameters

Create a list of disk strings. If the parameter starts with
"disk" add it to a list. If it starts with "/dev/rdisk" remove
the "/dev/r" from the beginning of the string and then add
the substring to the list.

Prompt: Step 1 - create main(), check parameters

Check that the script is being run with root privileges. If
not, print out an error message and exit with an error.

Output:

Prompt: Step 1 - create main(), check parameters

Create a class called Disk. The __init__ function should
take the bsd disk name string similar to "disk1".

The __init__ function should create a 16 megabyte (MiB)
block of random data as a data member for each Disk
object.

The __init__ method should store the string in a data
member called description.

Prompt: Step 2 - create Disk class

Add a disk_description method do the Disk class which
returns the description data member.

Prompt: Step 2 - create Disk class

Add a get_size method to the Disk class which gets the
size of the disk. This should use the DKIOCGETBLOCKSIZE
and DKIOCGETBLOCKCOUNT options with the fcntl.ioctl call
to retrieve the disk block size and disk block count and
return the product of these two.

If there is an error or if the disk does not exist, the method
should return 0.

Prompt: Step 2 - create Disk class

Output: Step 2 - create Disk class

Find a faster way to fill the random_data buffer with
random data (lines 28 and 29). It doesn't have to be truly
random just has to be unique to each Disk object.

Fix: Step 2 - create Disk class

Output - Fixed: Step 2 - create Disk class:

Add a write_pattern method to the Disk class. This method
has no return value. When this method is called, the bsd
disk is opened and the disk is written to in 16 megabyte
(MiB) blocks. Once all of sectors on the disk have been
written to, the bsd disk is closed.

If there is an error when writing to the disk, the
write_pattern method returns immediately.

Prompt: Step 3 - add write_pattern() to Disk class:

Add three data members to each Disk object: byte_offset
and command_successful and command_complete.

The byte_offset data member stores the byte offset for
the start of the next write operation. The
command_successful data member is a boolean which is set
to true after every write command completes successfully.
If the write command completes with an error, it is set to
false. The command_complete data member is a boolean
which is set to false when the write_pattern method is first
called and set to true just before it returns.

Add methods called current_offset,
current_command_successful and
current_command_complete, which returns values of the
byte_offset, command_successful and command_complete
respectively.

Prompt: Step 3 - add write_pattern() to Disk class

Add code to the __init__ method to set the current_offset
to 0, the command_successful to True and the
command_complete to False.

Prompt: Step 3 - add write_pattern() to Disk class

Add a global boolean variable to the script called
gTestMode. Add code to the write_pattern method of the
disk class so that it only writes to the first 1 gigabyte (GiB)
of the disk if the boolean is true.

Prompt: Step 3 - add write_pattern() to Disk class

Add code to the main function to iterate through each of
the Disk objects and call write_pattern on each one.

Prompt: Step 3 - add write_pattern() to Disk class

Add code to the main function so it uses the values from
the disk_description, current_offset,
current_command_successful methods to print out the bsd
disk name and total number of bytes written and whether
there was an error after calling the write_pattern method
for each Disk object.

Prompt: Step 3 - add write_pattern() to Disk class

Output: Step 3 - add write_pattern() to Disk class

Add a read_pattern method to the Disk class. This method
has no return value. When this method is called, the bsd
disk is opened and the disk is read in 16 megabyte (MiB)
blocks.

After each read completes, the 16 MiB of data is compared
to the buffer in the Disk object to make sure it is identical.

Once all of sectors on the disk have been read, the bsd disk
is closed. If there is an error when reading to the disk or
the pattern is not identical to the one written out, the
read_pattern method returns immediately.

Prompt: Step 4 - add read_pattern() to Disk class

Add a test_disk method to the Disk class. When called, this
method first calls the write_pattern method.

When write_pattern returns, it checks the value of the
command_successful data member and calls read_pattern if
the value is True.

Otherwise, test_disk just returns.

Prompt: Step 5 - add test_disk() to Disk class

Add a boolean data member called writing to the Disk class.

Add a currently_writing method to the Disk class which
returns this value.

Add code to the __init__ function to set the writing data
member to False.

Prompt: Step 5 - add test_disk() to Disk class

Change the main function so that it no longer calls
write_pattern and read_pattern on each Disk object.
Instead it calls test_disk on each Disk object.

It should then use the values from the disk_description,
current_offset, current_command_successful methods to
print out the bsd disk name and total number of bytes
written and whether there was an error after calling the
test_disk method for each Disk object.

Prompt: Step 5 - add test_disk() to Disk class

Output: Step 5 - add test_disk() to Disk class

Change the main function so that it creates a separate
thread for each Disk object in the list. This thread should
call test_disk.

Prompt: Step 6 - create a thread for each Disk object

Add code to the main function so that every 10 seconds it
prints a line with the number of seconds since the script has
started. It should then go to the next line and print out a
status line for each Disk object.

Each status line should include the bsd disk name, the
current offset, whether the Disk object is reading, writing or
completed, whether the last completed successfully.

Prompt: Step 7 - monitor progress of each Disk object

Output: Step 7 - monitor progress of each Disk object

Final Output:

Reports error on: Passive Person
with AI

Active Person
with AI

Disk disappears ❌ ✓

Write error ❌ ✓

Read error ❌ ✓

Data corruption ✓ ✓

Functionality of final tool

No AI Passive Person
with AI

Active Person
with AI

Time to Create Prompt 1 minute 1.5 hours

Time with Agent 2 hours 1.5 hours

Time to Manually
Debug 6 hours 0 hours

Total Time 12 - 15 hours 8 hours 3 hours

Time to create final tool

Recommendations

• Use AI as a tool not a solution

• Start with a context prompt

• Do your own design and describe it in your prompts

• Don’t argue with AI

Is AI in your future?

