Introduction to

Declarative MDM

Before we get started, there’s two things I’d like to mention. The first is that, all of the sides,
speakers’ notes and the demos are available for download and I'll be providing a link at the end
of the talk. | tend to be one of those folks who can’t keep up with the speaker and take notes at
the same time, so for those folks in the same situation, no need to take notes. Everything I'm

covering is going to be available for download.

Declarative Device Management

MDM

Mobile Device Management

I’m also going to be using the following acronyms frequently during this talk, DDM and MDM.
Here’s what they stand for. If you don’t understand what they mean now, hopefully you will by
the end of the talk.

What is MDM?

Let’s start by getting on the same page. What is MDM? In the context of Apple devices,
Mobile Device Management or MDM is a delivery mechanism for distributing data and settings
to Apple devices. This includes Macs, iPhones, iPads and Apple TVs, with Apple Watch now
being added.

 API for sending device

management commands
For iOS, usable on iOS 4.x and
later.
For macOS, usable on 10.7.x

and later.
For tvOS, usable on tvOS 10.x
and later.

e Not all MDM commands
are backwards-compatible

More specifically, MDM is an API for sending device management commands. Not all of these
commands are backwards-compatible, so MDM commands for a specific OS version and
later won’t work on earlier OS versions.

When did MDM enter the picture? Apple first rolled it out starting with iOS 4 and it came to the
Mac platform starting with Lion. tvOS is an outgrowth of iOS 9, so the ability to use MDM has
been there on tvOS from the start.

G%(///(/(//’(/
K./%’

You can use MDM to push email, security settings, applications, app settings, certificates and
even media content to Apple devices.

How does MDM
management work?

 Apple's push notification

services (APNS)

e Mobile device management
(MDM) server

There are two major components to MDM. There’s Apple’s Push Notification Service and then
there’s the MDM server used to manage those devices. Let’s take a look at APNS first.

When you take your new Apple device out of its box and power it on for the first time, it
doesn’t yet know how to connect to APNS. This is because it may have been sitting in its box
for a while and Apple wants to make sure that it’s getting the latest information.

What the Apple device does know is the address of the initialization server it’s supposed to
talk to and that it’s supposed to download a bag file.

http://init-p01st.push.apple.com/bag

The bag file is a plist which contains the necessary data for the Apple device

APNS.

<data>Bf LineYAToS18TnOA LHGEILFSULACAULBY4YLKDFtLIIA2GKAZT Ljxd6ZyKCtwsnGs .

0//EN" "http://wwa.apple. con/DTDs /PropertylList-1.0.d

3

<key>certs</key>
<array>

TELuYyaxT

Ey+921HR/
1

3USLp

0OESFC.

YOvYalieL
B03xTP

QUFB2AC)

QubnvoL

AQEANKL4J00WYCHT W/ +

f1n20y7/

inqust: 3

iEfey1TQD3yQ0ct
HL

SFycYisMallsK:
90qrCOpSZhs3bulng2FnxQGaNVEYFobg==</data>

YanLicP:

<data>MITE/ 3 CC

@xa0A+
o

JEOHCYGAUECHNUZVLIHA3dySU

952WdnbC10:

TCOGTOFLNT:

RIAJtThLIOPESEyal/
ipoL

240k
0rJZ5RBGKFEaL]

3 1athATLar

1DYqjVs1/ WZLuhGSqzGaIdT:

JsLnVugH)1c30ubnveL

368449123/

1523004720
</array>

<key>bage/key>

30gUFVCTEDICT

QkBa2V5PKFOT! < LeTaK

Qk8a2VPKFOT

brRLZ2VyPJE1PC:

WNOA1 12

2
Dk Cok J4KCgKIPGE
LeTaKC

Ty ZHFSP) EWL1ABL3) LYW+ CgOICTXI 2K
JPHIL

s

14CgolCTs

NjAWLABLI 1YH+CoIC

TxpbR1Z2VyPj I8L2 Luc

PG LETSBUEST

ke
9rZXk4C 2Wudvnzx1+
L SABL3I WYt

9r2XkHCgKIPH.
9r2Xk ok

9pbr

9rZXk+Cok:

pbrRL
3 Tb3VyPCOrZXke Cok:

21006VnZX14Cg0)C

3 8+CgoICTxr2Xkr

L3010 CgoI CTx Xk

LeTAKC|

4uPC

<goJ U2t

972Xk Cok:

JgBLIIL

1CTxp

gkIPG LeTSL
Lud

arzxkr

T4CgolC

LETAKC 9pnRL

TxrzXke

ok

9r2XkCghl

JCTXDENVL24KCgk)

1 +Cg0ICTrZXks

46
LIUHY2PCOr ZXks Cok PGy CRFSPgoICTIVYKIy YXk

QVBOUGNVAXIp2X Lb3NOCIByaWINCN LIUHYBPCOrZXke Cak.
CgodC

TxhcnIheTAKCOKBL2FyCIFSPGOKCOKBa2VSPKFQTNDb3VyakVySGOZGHNE WZhdHxOSVB2NDWa2VSPgoICTxh

CgkIPCInCnIneT4KC Lekh

€nIheTAKCOKBL:

</dict>
</plist>

TXNCNINET4KCOKBLF YR 5PGOKCOKBa2VSPKFQT INCYNGFEHBPCNKBL2E LeTAKCOKaNSOZW L 4xHDgw

TrrZXkr
210dGVnZXT+CoIPCoKaWNEPgoBL3Bs XNOPgo=</data>

to start talking to

Now that the Apple device knows how and where to start talking to APNS, it opens a
connection and says hello.

APNS says hello back and provides a certificate.

The device checks the certificate and verifies that it’s valid, telling the device that APNS can
be trusted to communicate with.

The device has an Apple-issued device certificate, so once the device has verified that the
certificate provided by APNS is valid, it sends that device certificate up to APNS.

APNS checks the certificate it’s been sent by the device and verifies that it’s valid, telling
APNS that the device can be trusted to communicate with.

Once both sides know that the opposite end can be trusted to communicate with, they
exchange cryptographic ciphers and begin a secure conversation.

APNS will be used by Apple devices regardless of whether they’re enrolled in a mobile device
management service or not. For the various apps on your Apple device that use push
notifications, APNS will be how those notifications get sent to your device.

support.apple.com

iPad iPhone Watch AirPods TV & Home Only on Apple Accessories Support

If your Apple devices aren't getting Apple
push notifications

Learn what to do if your Apple devices don't see Apple push notifications when
connected to a network.

This article is intended for network administrators.

How Apple Push Notification Service connects

To use Apple Push Notification Service (APNs), your macQOS, iOS, tvOS, and watchOS
devices need a persistent connection to Apple's servers over Ethernet, cellular data (if
capable), or Wi-Fi.

Check required ports and hosts

APNS also requires having certain ports opened outbound. Details are available via link on the
screen.

https://support.apple.com/HT203609

support.apple.com

Check required ports and hosts

If you use a firewall or private Access Point Name for cellular data, your Apple
devices must be able to connect to specific ports on specific hosts:

e TCP port 5223 to communicate with APNs.
e TCP port 443 or 2197 to send notifications to APNs.

TCP port 443 is used during device activation, and afterwards for fallback if
devices can't reach APNs on port 5223. The connection on port 443 uses a
proxy as long as the proxy allows the communication to pass through without
decrypting.

The APNs servers use load balancing, so your devices don't always connect to
the same public IP address for notifications. It's best to let your device access
these ports on the entire 17.0.0.0/8 address block, which is assigned to Apple.

This is the part of the KBase article where your Infosec and firewall folks may start shaking
their heads and saying things like “No, no”, and “Can’t do it”.

APNS never needs an inbound network
connection on your network.

Only outbound connections from your
network to Apple’s network (17.0.0.0 / 8)
are needed for APNS.

APNS never makes unsolicited
connections.

APNS uses TLS 1.2

APNS authenticates all transactions
with device tokens and payload tokens,
and validates all SSL certificates.

For those folks having that argument with their security or network folks, here are some
important facts to know.

[) E] < support.apple.com

If you can't allow access to the entire 17.0.0.0/8 address block, open access
via the same ports to these network ranges on IPv4 or IPv6:

IPv4

e 17.249.0.0/16
e 17.252.0.0/16
e 17.57144.0/22
* 17.188.128.0/18
e 17.188.20.0/23

IPv6

e 2620:149:a44::/48
e 2403:300:a42::/48
e 2403:300:a51::/48
e 2a01:b740:a42::/48

In the event that your network or security folks absolutely won’t do it, Apple does provide a
more restricted set of IPv4 and IPv6 ranges to use.

Push Diagnostics

Status Host Platform IP Address Reverse DNS Category

Pass itunes.apple.com i0S, tvOS, and macOS 23.55.204.23 a23-55-2... App Store

Pass appldnld.apple.com i0S only 17.253.21.202 usqas2-vi... Software updates
Pass tbsc.apple.com macOS only 17.171.47.75 Device setup

Pass ocsp.apple.com i0S, tvOS, and macOS 17.253.21.205 usgas2-vi... Certificate validation
Pass ocsp.entrust.net i0S, tvOS, and macOS ~ 23.13.165.231 a23-13-1... Certificate validation
Pass skl.apple.com macOS only 17171.47.7 skl-mdn-... Software updates
Pass captive.apple.com i0S, tvOS, and macOS 17.253.21.206 usqas2-vi... Device setup

Pass static.ips.apple.com i0S, tvOS, and macOS 23.1.193.76 a23-1-19. Device setup

Pass gg.apple.com macOS only 17.171.47.69 Software updates
Pass vpp.itunes.apple.com i0S, tvOS, and macOS 17.125.249.4 Device setup

Pass osrecovery.apple.com macOS only 17.42.252.38 Software updates
Pass 5-courier.sandbox.pus... i0S, tvOS, and macOS 17.188.178.92 APNS

Pass updates-http.cdn-appl... i0S, tvOS, and macOS ~ 17.253.21.206 usqas2-vi... Software updates
Pass 5-courier.push.apple.c... APNS 17.57.144.55 APNS

Pass crl.entrust.net i0S, tvOS, and macOS ~ 23.62.230.72 a23-62-2... Certificate validation
Pass 5-courier.push.apple.c... APNS 17.57.144.55 APNS

e “

hitps://twocanoes.com/products/mac/push-diagnostics/

Once the argument is over and they’ve agreed to open up the needed ports, you may find that
they didn’t actually open up all the necessary ports. To check this, Two Canoes software
makes a great diagnostic tool.

https://twocanoes.com/products/mac/push-diagnostics/

A Push Odyssey:
Journey to the Center of APNS:

https://www.youtube.com/watch?v=Z-Lg9uBbmfk

For more information about APNS and how it works, | encourage you to check out Brad
Chapman’s talk on the subject. It was given at the Jamf Nation User Conference in 2017 and
is available via the link on the screen.

Now let’s turn our attention to the other half of mobile device management, which is the MDM
server.

https://www.youtube.com/watch?v=Z-Lg9uBbmfk

What’s an MDM server?

HTTPS server

Needs to be able to
respond with both of the
following:

e HTTP 200 OK

e A plist in XML format
which contains a
command.

So, what is an MDM server? When you get down to it, it’s an HTTP server which responds to
communication with either a plist containing a command, or HTTP 200, which is the OK

response.

Perpetual plist passing

<?xml version="1.0" encoding="utf-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Command</key>
<dict>
<key>0Options</key>
<dict></dict>
<key>Queries</key>
<array>
<string>foo</string>
<string>bar</string>
</array>
<key>RequestType</key>
<string>DeviceInformation</string>
</dict>
<key>CommandUUID</key>
<string>7564fecc-f1b5-4d2d-af17-986fdd68a252</string>
</dict>
</plist>

Most traffic between a device and the MDM server it’s enrolled with are going to be plists
being sent back and forth. Depending on the contents of the plist, some of what’s being
passed will be digitally signed or encrypted. For example, this is what a request from the MDM
server for a device inventory may look like.

Perpetual plist passing

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Command</key>
<dict>
<key>Payload</key>
<data>Zm9vYmFyYmF6</data>
<key>RequestType</key>
<string>InstallProfile</string>
</dict>
<key>CommandUUID</key>
<string>7e761ec5-9e20-42d1-9072-3d5a611le3ac5</string>
</dict>
</plist>

This is what a command from the MDM to install a certain management profile may look like.

MDM Server Certificates

e APNS Vendor Certificate
e APNS Push Certificate

| %ﬁlm |

Handard
‘ .@’

An MDM server also needs certificates. There are two types of certificates specifically used by
MDM servers, the APNS Vendor certificate and the APNS Push certificate

MDM Server Certificates

e APNS Vendor Certificate

e Used to sign APNS push
certificate’s certificate
requests (CSRs)

The first is the APNS vendor certificate. This is a special certificate which is used to generate
the certificate signing request for an APNS push certificate, prior to uploading the request to
Apple for an APNS certificate.

Push Certificates

For folks familiar with Jamf Pro, you may have seen this as part of setting up or renewing your
APNS push certificate. As part of the APNS setup or renewal, you can select the option of
downloading a signed CSR from Jamf Nation.

Once you’ve provided the necessary credentials, a signed certificate request for APNS is then
downloaded to your Mac. What’s happening in the background is that your Jamf Pro server is
communicating with a backend system with access to the APNS vendor certificate to
generate that certificate request for your Jamf Pro server.

ORURCBQTE LTVCAXL jAVLOVOL

Dovl J0U; ndﬂ(MSduLmRQl(l‘(]waGIzd(BZZXJzanuPSIxIyAKI(ABZG\ldDAKI(AngerXk‘

UHVZaEN LCnRTaWduYXR1cmUBL2t LeT4KICAGIDx2dHIpbmc +
aTkvL2ZTWLpXVE L 2UnZ: NLzNTe 19

H

TUHTLCT:
RE132UVmay 1R

UR3RHO,

U2RUBr cF3VVpXbUT rj dUUVCE

§2)F6QUIITGYRT | Ma2cyhix

UV 22ENLcnRS 2XF12XNBQINSPCIr 2kt

TOBLINOCLuZZ4KICAGIDXr ZXk+

JPHVCXbE1ISUIJakFOQmdrchralicSdzBCQVFFRKFBTONBUTHBTU
p

SFAZUKZYQ)

JRVY

ol T30

OHoys2 LLVTFaNFkyc 18nbXhQMVF
o,

joznl LNWIQTKXERINYVH2

UHVZ2EN LcnRDZXJ0aZpY 2FOZUNOYW LUPCOr Xkt
CiAgIC

‘loreksxL2dTRHABL AQTDxZXkt

pZeENGQUPCZOSHCK: 3K

GHNdBAOLCONG. TKFRRUZCUUF3Z1
BV FRTERDTIO SED2W INCHGT2 WKWk P VOSRAYyH

NGUTdadL

5 ekzFTU
BKSG

/1EyVn LkR2XEYVGORGRHbH

InLIRkp: 42JHVWd
21aU)CZFhSb21 IRBNELUTTBNREL4V2h; Tk

1ESXhXakNCAERFYU1CZ0dDZ21 WoenxD

3¢
IBTU1TazFFVANCVIDHNW

1VIMLIXVX UiakViTy

RU:

JdORRWUPL1pIaHZ] TKFRRUIC!
Bibop:

Tven9QaQpl 4uUFdSHU’

VNUGXYbF Z6WZS QUp6VAYWVS tmeCt Th2sxDI2CndBMIFUT2 L
TEK3Yer

YoNaYisyUit Ymx@aDY5L:

nZUMycGHZTGFUT20x0E

JpClrgjhid

Jusumm\mmnznczevcu\nouruuemzzm(szmnanmus;ckmustmwvnwm

nTL b1pJaZKalpBVY
nTkR2xt NULIQRhbUT
vy

IRz LtSU

EdsbNFX] T RZINNCS

RkJ350:

lkyRJBan\lSUh[

TG10dnI TOWh jSE.

Tnz.

4

it JSGAEQUBC:

IXVIRUMKEICH

QU
iMORRRUJCUVVBQTRIQKFRQLLOS3YvdzMWNAPONBVUSD
4] L

300: e

QT
ZF PWQUNGOXNr CTI3dWRYOF xbmQ: rYleduhaLﬂhhaxpﬂKBUKMDR(SHSSYS(Bemvr()etLSmRUSEIENFU\RJRk\DﬂVRﬂSE(LSBKLSE(LS](RUGJT)BDR\IJUS\AZJGH

FURSOtLSOtCK1ISU

Taconsh

Jht van(dpm\mm

SEJZWINC
UZKbGIHR A

YOhC,
C

\lvzpckulFSudEMWFQXa]N]Fvand)R)VnVJ Tsen

DXNXdHNXCKL

FYMLh ROV IWjgxUpKLOGY ThCAV) IBKSZ0) KTHF T

iYL
ZnCiBYXQAMF!

1200a02Nk02

XcKFRTL

DicFPRRZSESCOL Rk ik V2HkhXY1

1
4dwpId1LEVLIwak)

VSzI((Fll\nJDlJ

TU:

102VoYOhCCLpTNp o
JRVUFBNELCQUFCl T

U
CrTktIQnuL2H0Z3

o 2ZFVH
273U R N FLOGLLZTJpS AV UL TCXERNZS 2114 TE 2dpydUdnc2I3capupkid

KLSOtL

JRKLDQVRF Lsmsmuunxveewmx

9n0XdJQkFSUIBakF0Qmd rkhral
IhCd:

50tLQOtLSOELU:
P

VX I3YKAVZINKWpHak

JPQKIKHFIVY

165nz
1LUVACAwp3RIVNUL

J3YkAVZ1EY

3C: kzqQ

1JBUURra2Fr

VBQTRIQKR3OX

3}
NTZES1J1aTF2VUZqY3p:

LeUxH5 LK1V0cZ LRZX) JakFDNK JnKwo rRKFKMDMSQn FKa) UaY 3B bNS CKVKQ2p IK1F 1
1

xC
XNURBGVITn)

U
mvmauexglzerameormfm(mmmv

33 KVF: 182anNN
LJ07RqQU

ou;
nkJr\aBZvUWLOUJwH]VSMKNWNZEHNDE]UUUMIIWSQDR]RZZZGF\AKJnT\ZIU@FF(manU\NSU\(0GpBCU)

3)CZ0VGQL

]

KLISERCZ2yOadFRIRYBNGSKNCdChx SR YaLObApORZ ISURSEZFY

‘1 UXNTVJSE.

OW LN l\XTmpaHEIw[H g

3 11a2FYUnBiM; V6SUCSBULI)
IT]BZWFJsY LGHOWRT

YcSdULIgnL;
v

NEDIVCQUFVUEDSUIULD]CkiwbEleﬁklelShMQT]NtLanyﬂbS;deAmZow%Rz

[MupSNBWYN LUATYSRZN; T hQUBVFbn L2RnR LT2NUdFjWHFOeCt JathL

hod.

MR ZRF WMUDN1dWphL

b\IBJllzRBwApV53meRyayngp(:mszFhvaAuusatluVOR(BDR\lJUSUZJQBFURSmLSB!(]wv:}kyaanPgugIDvaG U dD4KPLObGL2ADAK

What is generated is an encrypted plist, ready for uploading to Apple’s push certificates portal.

MDM Server Certificates

e APNS Push Certificate

e Used by MDM server to
communicate with APNS

That brings us to the APNS push certificate. This is a special certificate used by MDM servers
to communicate with APNS.

Apple Push Certificates Portal

Welcome

https://identity.apple.com

If you’ve ever set up or renewed an APNS push certificate, you’ve used the site referenced on
the screen. It’s where you take the certificate request generated by your MDM and use it to
get a push notification certificate.

https://identity.apple.com

Sign in with your Apple ID

https://identity.apple.com

Your ability to generate a push notification certificate is tied to an Apple ID, which you use to
log into the portal site.

https://identity.apple.com

APNS Apple ID Do’s and Don’ts

Do:
e Have an Apple ID dedicated just to

creating your APNS certificate.

e Have multiple Apple IDs for your
APNS certificates if you have more
than one MDM server .

* Have the Apple ID(s) documented.

When it comes to the Apple ID used for your APNS certificates, | have some short do’s and
don’ts to keep in mind. Where possible, you should try to have one Apple ID per APNS
certificate and make sure you have them documented.

APNS Apple ID Do’s and Don’ts

Don’t:
*Use a personal Apple ID.
e Use an Apple ID tied to your
specific work email address.
e Lose the password to your Apple
ID(s).

You should also make sure that you’re not using a personal Apple ID or one tied to your work
email address. If you can, have a dedicated email mailbox set up just for the Apple IDs
involved. Also, really important, do not lose the password for the Apple ID in question.

Der Flounder

Seldom updated, occasionally Insightful-

About Contact

% Home > Apple Push Notification Service, Mac administ: Mobile Device Management > RSS feed
Migrating an APNS certificate from one Apple ID to another Apple ID —
Migrating an APNS certificate from one Apple ID to another Apple ID

8 April 11, 20

April 2023

Go to comments. e a comment

As part of a recent change, I needed to migrate an APNS cef e from being associated with
one Apple ID to now being associated with another Apple ID. Apple has a KBase article available
which provides contact information for this, which is available via the link below

https://support.apple.com/HT208643

For those folks with AppleCare support plans, you can also submit a ticket to AppleCare. That's
the route I took. Regardless of which support avenue you pursue, Apple wil request the following
information from you
Recent Comments
« APNS Certificate Subject DN
Luke on Creating root-level
icate Serial Number el
icate Expiration Date
Apple ID you want to migrat
« The Apple ID you want to migrat
For more information, please see below the jump Charlie eWhizz on Creating r
You can obtain the following information from the Apple Push Certificates Portal
« APNS Certificate Subject DN et
« APNS Certificate CN

how to do this, please use the following procedure Categories

1. Log into the Apple Push Certificates Portal using the Apple ID you want to migrate from. Select Category
: — Archives

June 2023
Apple Push Certiicates Portal May 2023

April 2023

Certibcatesfor Third-Party Servers et 2093

5 e —— o

January 2023

That said, if you do lose the password to the Apple ID in question, Apple does have a process
to transfer APNS certificates to another Apple ID. | have a blog post on how to do this
available via the link on the screen.

https://tinyurl.com/fixapns

identity.apple.com

T "
iPhone Support

Apple Push Certificates Portal

Certificates for Third-Party Servers

Service Vendor Expiration Date* Status
Mobile Device Management ~ Twocanoes Software, Inc Aug 22, 2022 Expired
Mobile Device Management JAMF Software, LLC Dec 13, 2023 Active
Mobile Device Management JAMF Software, LLC Jan 4, 2024 Active
Mobile Device Management JAMF Software, LLC Jan 12, 2013 Revoked
Mobile Device Management JAMF Software, LLC May 26, 2013 Revoked
Mobile Device Management JAMF Software, LLC Dec 9, 2014 Revoked
Mobile Device Management JAMF Software, LLC Sep 16, 2015 Revoked

Mobile Device Management JAMF Software, LLC Aug 30, 2016 Revoked

Revoking or allowing this certificate to expire will require existing devices to be re-enrolled with a new push certificate.

About Apple Push Certificates Portal

Create and manage push certificates that enable your third-party server to work with the
Apple Push Notification Service and your Apple devices.

Learn more about Mobile Device Management

To protect your server's identity, Apple Push Certificates Portal allows you to revoke push

To show what can happen if you don’t follow those rules, here’s what the portal looks like
when | log in with my personal Apple ID. I’'ve got two active APNS certificates and now | have
to figure out which specific APNS certificate goes with my MDM server. This is important, for
reasons I’ll discuss in a bit.

identity.apple.com

iPhone iTunes Support

Apple Push Certificates Portal

Renew Push Certificate

Enter your Certificate Signing Request signed by your third-party server
vendor to renew the following push certificate

Service Mobile Device Management
Vendor %20JAMF3%20Software%2C%20LLC

Notes

Vendor-Signed Certificate Signing Request

Choose File JAMFSignedCSR.plist

| think I’'ve got the right one figured out, so let’s upload that CSR.

Apple Push Certificates Portal

Confirmation

You have successfully created a new pu

Great, I've got a new APNS push certificate. Let’s download it and get it over to my MDM
server.

Settings : Glol

< Push certificates

Verify Certificate

Download CSR

WARNING
A Existing devices that nrolled with Jamf Pro will no longer respond to push notifications

Sign CSR

Certificate
push notification certificate
Upload Certificat
Verify
Existing Topic:

Complete
New Topic:

Click Next to overwrite your existing certificate

Well, this looks bad. What happened?

Apple’s push notification service is a chain of trust, with multiple security factors built into that
chain.

APNS push certificate

APSP:fe5889be-8ae2-4a62-92fd-
€94df8877c7e

D com.apple.mgmt.External fes889be-8ae2-4a62-92fd-e94df8877c7e

Name APSP:fes889be-8ae2-4262-92fd-e94df8877c7e
Region US

ntry or Re

mon Name Apple Application Integration 2 Certification Authority
al Unit Apple Certification Authority
Apple Inc.
ntry or Region US
6150069533494760542
orithm SHA-256 with RSA Encryption (1.2.840.113549.1.1.11)

meters None
Friday, June 16, 2023 at 12:14:41 PM Eastern Daylight Time
Saturday, June 15, 2024 at 12:14:40 PM Eastern Daylight Time

Public Key Info
Algorithm RSA Encryption (1.2.840.113549.1.1.1)
None
ublic Key 256 bytes
ent 65537
ze 2,048 bits
Encrypt, Verify, Derive

CS5A64CC3D28DIAC2..

256 bytes : 69 D5 39 7D FD 1A 18 6A ...

1 Key Usage (2.5.29.15)
tical NO
age Digital Signature

1 Basic Constraints (2.5.29.19)

NO

The first part is the certificate that | received from the push certificate portal. When inspected,

the certificate looks like this.

APNS push certificate topic

APSP:fe5889be-8ae2-4a62-92fd-e94df8877c7e

com.apple.mgmt.External.fe5889be-8ae2-4a62-92fd-e94df8877c7e
Nar APSP:fe5889be-8ae2-4a62-92fd-e94df8877c7e
us

The second part is what’s known as the topic, which is a specific UUID identifier associated
with your MDM server. The certificate generated by the push notification portal will include the
topic in both the Common Name and User ID fields of the certificate.

This information is also visible if you click the info button next to the relevant certificate on the

portal page.

Apple Push Certificates P~-+~!

Serial Number :
Subject DN :

Certificates for Third-Pa Nots:

iPhone Support

P—
Y
759eald2c5dafe34

C=US, CN=APSP:fe5889be-8ae2-4a62-92fd-e94df8877c7e,
UID=com.apple.mgmt.External.fe5889be-8ae2-4a62-92fd-e94df8877c7e

Service Vendor

Mobile Device Management JAMF Software, LLC

Jan 4, 2024

Active

""" | APSP:fe5889be-8ae2-4a62-92fd-e94df8877c7e

kom.apple.mgmt.External.fe5889be-8ae2-4a62-92fd-e94df8877c7e |
APSP:fe5889be-Bac2-4a62-02fd-e94df8877c7e

8 z-4aaz—926d~|

com.apple.mgmt.External
e94df8877c7e

SCEP Enroliment

JAMF Enrollment Payload: SCEP

AE78222A-80DB-4FD9-A196-FDDBCCBBS54AE

May 18, 2025 at 4:33 PM

The topic is also embedded in the MDM profile that your MDM server issues to your Apple
device, with the Topic field listing the User ID field of the APNS push certificate.

< Push certificates

Verify Certificate

To circle back to my earlier problem with the push notification certificate, | had accidentally
created a new push certificate for my MDM instead of renewing my existing one. Because the
topic is a UUID, it will be unique per MDM push notification certificate and can only be
included in push notification certificates if the certificate is being renewed.

Oops. Fortunately my MDM had warned me before | actually uploaded the new certificate with
the different topic.

If | had gone ahead and uploaded it, | would have broken the middle of my trusted chain of
certificates. All devices enrolled with my MDM would have instantly lost the ability to
communicate with the server because APNS would no longer be able to point them to the
correct MDM server.

Settings : G

« Push certificates

Once | went back, created an new CSR and made sure to renew the correct APNS certificate,
everything was fine.

With that knowledge, let’s take a look at how the MDM server talks to APNS. Like an Apple
device, it opens a connection and says hello.

APNS says hello back and responds with a certificate.

The MDM server checks the certificate and verifies that it’s valid, telling the server that APNS
can be trusted to communicate with.

The MDM server now sends the APNS push certificate that it was issued by the Apple push
certificate portal.

APNS checks the push notification certificate it’s been sent and verifies that it’s valid, telling
APNS that the MDM can be trusted to communicate with.

Once both sides know that the opposite end can be trusted, they exchange cryptographic
ciphers and begin a secure conversation.

APNS device token

However, the push certificate and the topic are not the end of the chain of certificates. The last
link for devices is what’s known as the device token.

This token is generated by APNS and is unique to the device.

&y

|
|

R oedadh & 25

These tokens are the same kind of tokens that APNS assigns to applications which use push

notifications.

In this case, the “application” in question is your MDM server. But how does the device get
the token from APNS and know to forward it to the MDM server? This happens as part of
MDM enrollment.

The device connects to the MDM server and sends in an enrollment request.

CONFIG

As part of the enrollment process, the MDM configuration profile is downloaded to the device.

The device is now managed by the MDM server and is able to communicate securely.

Now that the MDM profile is in place on the device, the device registers itself with APNS using
the topic

APNS

APNS then generates a token, based on the combination of the device ID and the MDM topic.

Once APNS has generated the token, it’s sent down to the device.

Once the token is sent to the device by APNS, the device then forwards it to the MDM server.
Once the MDM server has it, the token is associated with the MDM’s record for that device.

The device token may change occasionally. When a change is detected, the device
automatically checks in with the MDM server to report the new token.

PushMagic

Along with the token generated by APNS, the device itself also generates a unique string
known as PushMagic. This is sent to the MDM server and is associated with the MDM’s

record for that device. This PushMagic value is a UUID which ensures that the MDM server is
talking to the right device when it sends commands.

So now everything involved has the right cryptographic trust relationships in place to
communicate securely with each other. Let’s use that to send commands to our managed
devices.

First step is the MDM server creating a notification payload using the token and PushMagic of
the device it wants to send something to.

Next, APNS forwards the notification to the device. The device verifies that the topic, token
and PushMagic match, then accepts the notification.

The device sends feedback via APNS that it successfully received and decoded the
notification.

In response to the notification, the device checks in with the MDM and gets whatever
command or configuration settings that the MDM has for it.

"Hey you! Check in with your
MDM server!”

One thing that’s important to understand is that no management data goes over APNS. APNS
is only used as a trigger mechanism to make the device ask its MDM for commands to run.
This genericness is what allows APNS to be used by everybody who needs to send push
notifications, because APNS is only ever telling the device to check in with whatever originally
generated the notification.

MR R ===t
=3
6(’//—’%('(1/{7 \‘\ fw
Handard hv\ - , o
.(@/, ! s \i / ’:' A \
\ 2", @ \

APNS is also pretty secure because of its verification scheme. By the time an APNS
notification reaches its target device, it relies on the push notification certificate being valid,
the topic being valid, the token being valid and the push magic string being valid. If any of
those are not valid, the notification is automatically discarded by the system.

So that’s MDM, which we’ve all been using for over a decade to manage Apple devices.

What is DDM?

So what’s Declarative Device Management or DDM?

What it is:

New data management
paradigm:

e Avoids common
performance and scaling
Issues seen with MDM

Here’s what it is - a new data management paradigm which uses a declarative data model
which is designed to address and avoid performance and scaling issues commonly seen with
MDM.

What it is not:

New management protocol:
*DDM has been added to

the existing MDM
protocol to make DDM
adoption easier.

Here’s what it is not: a new protocol. DDM has been added to the MDM management protocol
to make switching to DDM easier.

Why use DDM?

Why do we want to use it?

MDM

Command

————

Acknowledge

—_—

Query State

——

Send State

e ——

New Command

—

To make a long story very short, MDM without DDM is a very server-focused management
protocol. The endpoints are told to check in with their MDM server, the endpoints do and the
server tells them to do something. Over and over, endpoint checks in, server tells the endpoint
to do something, the endpoint does it.

The server in this scenario is doing pretty much all the work of figuring out what to do. The
endpoint’s role is doing what the server tells it to do.

MDM

eEach management workflow takes time
and multiple round trips between the
MDM server and the managed device

ePerformance challenges grow larger as
the number of devices being managed
Increases across the organization

Apple wants to ensure that the MDM protocol remains responsive and scales to meet a
growing population of devices, so changes are needed.

DDM

Check in with you later.

S ———

Here’s the plan.
You got this?
Thanks, | got this. I ' .
e

DDM is designed to take some of the load off of the server by moving some of the
management to the endpoints. With DDM, the endpoint is being given more responsibility for
managing itself and deciding when to report information back to the management server. This
change does three things right away:

1. It reduces the network resources needed for MDM communication.
2. It reduces load on the management server.
3. It saves time overall.

DDM Data Model

eDeclarations
eStatus Channel
e Extensibility

Like MDM, DDM uses a structured data model. Let's take a look at what it looks like, starting
with declarations.

Declarations

"Type":"com.apple.configuration.passcode.settings",
"Identifier":"4AE28C9F-7082-4521-B435-2550E8B4D57A",
"Server Token":"EAB5142C-7E86-4C8E-B576-B7F94DOF6CEA",
"Payload": {stuff goes here}

Declarations are the policies sent to a device and they have a structure which looks like this.
And surprise! Now it's JSON in place of MDM's XML.

Declarations

"Type":"com.apple.configuration.passcode.settings",
"Identifier":"4AE28C9F-7082-4521-B435-2550E8B4D57A",
"Server Token":"EAB5142C-7E86-4C8E-B576-B7F94DOF6CEA",
"Payload": {stuff goes here}

Type: Identifies the type of policy

Type identifies the policy that the declaration is using.

Declarations

"Type":"com.apple.configuration.passcode.settings",
"Identifier":"4AE28C9F-7082-4521-B435-2550E8B4D57A",
"Server Token":"EAB5142C-7E86-4C8E-B576-B7F94DOF6CEA",
"Payload": {stuff goes here}

Identifier: Unique identifier for
declaration

|dentifier provides a unique identifier for the declaration in the form of a UUID

Declarations

"Type":"com.apple.configuration.passcode.settings",
"Identifier":"4AE28C9F-7082-4521-B435-2550E8B4D57A",
"Server Token":"EAB5142C-7E86-4C8E-B576-B7F94DOF6CEA",
"Payload": {stuff goes here}

ServerToken: Unique version

identifier, based on the Identifier
value

ServerToken provides a unique identifier for the current version of the declaration, based on
the Identifier value in the declaration. This will also be in the form of a UUID.

Declarations

"Type'":"com.apple.configuration.passcode.settings",
"Identifier":"4AE28C9F-7082-4521-B435-2550E8B4D57A",
"Server Token":"EAB5142C-7E86-4C8E-B576-B7F94DOF6CEA",
"Payload": {stuff goes here}

Payload: Settings for the policy

Payload contains the settings for the policy being sent by the declaration.

Declarations

eType: Identifies the type of policy

eldentifier: Unique identifier for
declaration

eServerToken: Unique version identifier,
based on the Identifier value.

ePayload: The settings for the policy.

As a quick review, here’s all that makes up the structure of a declaration.

Declaration Types

eConfigurations
eAssets
eActivations
Management

Now let’s dig into the various declaration types.

Declaration Types

"Type": "com.apple.configuration.passcode.settings",
"Identifier": "4AE28C9F-7082-4521-B435-2550E8B4D57A",
"Server Token": "EAB5142C-7E86-4C8E-B576-B7F94DOF6CEA",
"Payload": {
"RequirePasscode": "true",
"RequireComplexPasscode": "true",
"MinimumLength": 6,
"MaximumFailedAttempts": 10,
"MaximumGracePeriodInMinutes": 10,
"MaximumInactivityInMinutes": 10,
"PasscodeReuseLimit": @

Configuration: represents policies
being applied to the device.

The first is the configuration type and this should be pretty familiar. It’s a policy definition,
similar to what’s used in MDM profiles.

Declaration Types

%@/W

6//(///(/(//’(/
—

Assets: data needed by
a configuration.

Next, there are assets and these are data needed by a configuration, like MDM URLSs,
certificates, email addresses or contact information.

Declaration Types

"Type": "com.apple.asset.useridentity",
"Identifier": "@DEE79A7-3244-42A0-A4CB-46333ACOF63A",
"Server Token": "469D704C-A817-4B71-A1B5-B221FDB43E97"
"Payload": {

"FullName": "First Last",

"EmailAddress": "user@example.com"

Assets: data needed by
a configuration.

Here’s how an asset looks as a declaration.

%ﬁ///%ﬂ(d(i

Dhandard
—

The great thing about assets in DDM is that they can have a one-to-many relationship. One
asset can be used for multiple configurations.

CONFIG CONFIG CONFIG

This is a great advantage for DDM configurations over MDM profiles, as MDM currently
requires that resources for that profile need to be available in the profile. For example, if you
need to have the same certificates for authentication for both WiFi and VPN, this either means
you need to have your WiFi and VPN configuration in the same profile as your certificates, or
you’re duplicating the same certificates in the profiles used to configure WiFi and VPN on your
devices. In addition, any time we would need to update a certificate in this scenario, it’s
necessary to remove and reinstall the profile. Especially in the case of a WiFi profile update,
this may mean that removing the profile means removing the Mac’s only way of
communicating back to the MDM server. So a removal of the profile may be the only step the
device accomplishes because now it can’t communicate with the MDM to put the WiFi profile
back.

%ﬁ/ﬂ%ﬂ(d(i

Dhandard
—

With this one to many relationship, you can change one asset and it’ll update in all of the
configurations which reference it. This is a huge step forward in functionality because now we
can make incremental updates to a configuration without having to re-push the profile. Going
back to the WiFi profile issue | just mentioned, this should mean that WiFi stays up and
working the whole time during the profile update process.

Declaration Types

"Type": "com.apple.activation.simple",
"Identifier": "2AD45A8B-B656-4E51-8406-D97549CDE134",
"Server Token": "7BCE079A-73D6-4A3E-8F5B-9B6021F43140",
"Payload": {
"StandardConfigurations": [
"F3FB5A3F-9835-4A9B-9ED@-D2C813E6668E",
"EBC2380F-4F8A-4E75-B9AC-F6300AFBD7FE"

Activation: group of configurations

Activations are a group of configurations which get applied to a device. They also specify the

logic that determines how and when the policies defined by configurations get applied to the
managed device.

CONFIG

These configurations are also applied atomically to the device, such that the system applies all
referenced configurations together, or it applies none of them.

All of the configurations, and assets referenced by those configurations, must be valid in order
for the system to apply the activation.

CONFIG

If you have an invalid configuration, or an invalid asset defined in a configuration, nothing
happens and none of the configurations get applied.

T e
ferum

T

=

AN

CONFIG

Activations in DDM can have a many-to-many relationship, where configurations can be
referenced by multiple activations. One activation can hit multiple configurations at once and a
configuration can be used by multiple activations. This means you can have your devices

process complex business logic, while DDM means that the devices are handling this logic
autonomously in place of the server having to do all the work.

Activation Predicates

Determines activation behavior
eBoolean logic
eDevice will only process
activation if predicate
evaluates to TRUE

Along with activations, we get predicates. These determine the activation state (if active or
not) on a device. This is going to use boolean logic and an activation will only be processed by
a device if the predicate is evaluated to be true.

Activation Predicates

"Type": "com.apple.activation.simple",
"Identifier": "2AD45A8B-B656-4E51-8406-D97549CDE134",
"Server Token": "7BCE079A-73D6-4A3E-8F5B-9B6021F43140",
"Payload": {
"StandardConfigurations": [
"F3FB5A3F-9835-4A9B-9ED0-D2C813E6668E",

"EBC2380F-4F8A-4E75-B9AC-F6300AFBD7FE"
1

b

"ﬁredicate“: "(device.model. family == 'iPad')"

Here’s an example of our previous activation declaration where the predicate is set to only
evaluate to true on iPads.

Declaration Types

Management: properties of the
overall management state on the
device.

The final kind of declaration is a management declaration. Management declarations are used
to send overall management state to the device.

Management
Declarations

Represent properties of the

overall management state
Organization information
MDM server capabilities
Conveys static information
to the device.

This includes a declaration describing details about the organization as well as a declaration
that describes the capabilities of the MDM server. These declarations are helpful for conveying
static data to the device which shouldn't change.

Declarations

e Configuration: represents policies
being applied to the device.

e Assets: data needed by a
configuration.

e Activation: group of configurations

eManagement: properties of the overall
management state on the device.

So those are our four types of declarations. But there’s more to dig into, so next let’s look at
DDM’s status channel.

Status Channel

Check in with you later.

e
*

Here’s the plan.
You got this?
Thanks, | got this. I ' .
e

Status Channel

In the DDM communication model, there’s communication between the management server
and the device going on, but there’s less communication because of the Status Channel.
Status Channel is a way for the server subscribe to only that information your server needs.

Once the server has subscribed to specific status items, the client will report to the server only
on those status items.

MDM

Command

T

Acknowledge

—
Query State ‘
. v

Send State

e ——

New Command

e

This model of endpoint to server communication cuts way back on the unneeded chatter
which happens with MDM and provides the server only that information that it actually needs.

Status Items

device.operating-system.family
device.operating-system.version
device.model.family
device.model.identifier

Status items are identified by key-paths, which consist of period-separated string tokens.
Examples of these are shown on the screen.

Status Items

"Type": "com.apple.configuration.management.status-subscriptions",
"Identifier": "8DEACD8F-3EA6-42AB-85A1-1EB2BB47F790",
"Server Token": "90452134-FFB3-4006-AF8D-B4F76EQQE668",
"Payload": {
"StatusItems": [
{

"Name": "device.operating-system.version"

’

"Name": "device.operating-system.family"

’

"Name": "device.model.family"

Here’s how a status channel subscription may look.

Status Items

{
"StatusItems": {
"device": {
"operating-system": {
"version": "16.0"
}
}
}

"érrors": []
}

A response from the endpoint may look like this.

Extensibility

What do you have?

R ——

Here’s what | have.

What do you have?

Here’s what | have. ' ¢
[

Apple's products have a long life cycle, so it’s essential to maintain compatibility between
different versions of an MDM solution with Apple devices of varying ages and capabilities.

Declarative management means that both the device and the MDM server now advertise
supported capabilities to each other. Each side of the management system is now aware of
what the other side supports because each side advertises their supported capabilities to
each other. Each side knows when it can start taking advantage of new features. These
advertisements include a list of supported features, representing both major and minor
protocol updates.

The endpoint will advertise supported payloads, including the full set of declarations and

status items supported by that device. Meanwhile, the MDM server advertises its capabilities
to the endpoint via a management declaration.

Extensibility

e Both endpoint and MDM server
advertise what they support
e Supported features

e Supported payloads
MDM server indicates support in
management declaration.
Client indicates support as
specific status item.

When the MDM server is upgraded, it synchronizes all new capabilities with the device like it
would any other declaration, which allows the device to start working with the MDM server's
new features. Likewise, the endpoint sends new capabilities to the MDM server as a specific
status item when that device's capabilities change.

DDM Integration with MDM

e DDM is integrated into the MDM
protocol for enrolilment, transport
and authentication.

e Declarations and MDM
commands / profiles coexist

e Unenrolling from MDM
management also removes all
DDM.

DDM is integrated into the MDM protocol and uses it for managing the enrollment /
unenrollment process, for handling the HTTP transport communication, and for device and
user authentication.

DDM Integration with MDM

e DDM is not disruptive to MDM.
e Declarations and MDM
commands / profiles coexist.
DDM can send and install MDM
profiles as configurations.

DDM should not interfere with existing MDM behavior, except where Apple says it does; more
on that in a bit. Declarations in fact leverage existing MDM behaviors using an MDM
command for activation and an MDM Checkln request for synchronization and status reports.
This is intended to ease the migration process from MDM to DDM.

DDM Integration with MDM

{
"Type": "com.apple.configuration.legacy",
"Identifier": "4BOE572A-7188-4249-87B3-C58F2340ECF8",
"Server Token": "815357CC-6571-4992-A8E4-AFDB9DBOCD89",
"Payload": {

"ProfileURL": "https://mdm.server.goes.here/profiles/importantsetting.mobileconfig"

In fact, you can send an existing MDM profile as a configuration. This will allow profiles to be

used with DDM, which in turn means you can shift profile-based logic to an endpoint without
having to rework your profiles.

DDM Integration with MDM

Just to show how it’s turtles all the way down, this means that in some cases you could have
added a setting as a managed preference to Workgroup Manager in Mac OS 10.3 Panther
Server in 2003.

DDM Integration with MDM

Later moved that managed preference setting into a profile in Mac OS X Lion, using profiles’
support for MCX settings.

DDM Integration with MDM

{
"Type": "com.apple.configuration.legacy",
"Identifier": "4BOE572A-7188-4249-87B3-C58F2340ECF8",
"Server Token": "815357CC-6571-4992-A8E4-AFDB9DBOCD89",
"Payload": {

"ProfileURL": "https://mdm.server.goes.here/profiles/importantsetting.mobileconfig"

Now twenty years after first adding that setting to Workgroup Manager, you can use DDM to
deploy that profile with that MCX setting.

o L e

I UNDERSTAND

A -
~ BURWHY:DO'WE'CARE=

+ makeameme.org

OK, so we’ve looked at MDM and DDM. Why do we care about DDM? What’s in it for us as
admins?

For that, let’s look at some of what is available in macOS Sonoma and iOS 17.

New DDM-managed software updates

e Can enforce software updates for a
specified OS version and build at
specified time.

e Available for the following
platforms:

e macOS
e jOS
e jPadOS

Software updates are manageable via DDM and can enforce deploying a specified OS version
and build which must be installed by a specified time.

New DDM-managed software updates

e DDM software update
configurations can coexist with
MDM software update commands
o Software updates enforced by

DDM will take precedence over
MDM commands or profiles

To help ease migration, DDM software update commands can coexist with MDM software
update commands. That said, DDM management is going to take precedence in this case
over MDM commands. This is one of those situations where DDM should not interfere with
existing MDM behavior, except where Apple says it does.

WHEN | FOUND OUT

&

| ‘ ’

ABOUT DDMSOFTWARE UPDATE

| mean, | don’t know about you but this is what | looked like when | found out about DDM
software updates. Forget the rest of it, that alone is huge. I’m looking forward to seeing how
this works on Sonoma and | expect a lot of you are too.

DDM-managed app deployment

e DDM configuration can specify an
app be available on a device at a
desired time.

e App can be sent to the device
ahead of time, then made
available when needed.

e Administrators can switch
between sets of apps as needed.

DDM can also help with app deployments, with options for apps being sent to the device
before a specified time and only made available once the app is needed.

DDM-managed app deployment

e App can be shown to user without
the app being installed, so that the
user can choose when to install it.

e Since user is choosing to install,
no consent prompt appears.

e Asynchronous reporting keeps the
admin up to date on changes to
managed apps on the endpoints.

DDM also enables the option for the app being shown without actually being installed, giving
the user the choice of when to install it. One benefit of this is that since the user is choosing to
install, there’s no extra consent dialog which appears.

DDM-managed security compliance

sshd

sudo

PAM

CUPS
Apache httpd
bash

zsh

On macOS, DDM configurations can be used to specify sets of tamper-resistant system
configuration files for different system services. In their session at WWDC, Apple mentioned
that the built-in services listed on the screen could be managed this way.

DDM-managed security compliance

e FileVault status monitoring
e Status item:
diskmanagement.filevault.enabled
e Returns a boolean value to
indicate whether FileVault is
enabled or not

DDM also provides improved FileVault status monitoring, with a status item which will return
true or false boolean values.

Now, do you as a Mac admin need to know all this stuff about DDM? Largely no, this is stuff
your MDM vendor needs to know and figure out. However, understanding what’s going on
with both MDM and DDM means we know what to ask for from our vendors in terms of new

features and that’s valuable on its own.

| see DDM as providing us as Mac admins with a deeper and wider toolkit for management
than we’ve had before, which is a great thing.

One thing it is not as of yet is configuration management akin to that provided by Puppet,
Ansible, Salt or similar solutions. With those solutions, the configuration management server
provides a plan to the managed endpoint and the endpoint makes sure that configuration is
applied no matter what. This includes automatically reverting changes to managed settings
made by the end user on the endpoint.

THE BEACONS ARE LIT!
- ‘e ' ™ ,

. \‘,': . ’ E - 99
A" '
v A | | \

7
»
THAT'S WHAT 1 CAN DO.

As of now, DDM'’s ability to report changes via Status Channel means that automatic reporting
of changes is there, but automatic remediation which would be handled by the endpoint is
not.

"HOPEFULLY VERY.
} mVERY SOON

| really hope this is coming to DDM, but we are not there yet.

Useful Links

Apple Mobile Device Management: https://
developer.apple.com/documentation/devicemanagement

Apple Device Management documentation: https://
developer.apple.com/documentation/devicemanagement

A Push Odyssey - Journey to the Center of APNS: https://
www.youtube.com/watch?v=/-Lg9uBbmfk

Getting MicroMDM working and working with MicroMDM:
https://youtube.com/watch?v=WGKT-PyHz0|

Demystifying MDM: open source endeavours to manage
Macs: https://youtube.com/watch?v=6DBGIDcBKFw

https://developer.apple.com/documentation/devicemanagement
https://developer.apple.com/documentation/devicemanagement
https://developer.apple.com/documentation/devicemanagement
https://developer.apple.com/documentation/devicemanagement
https://youtube.com/watch?v=WGKT-PyHz6I
https://youtube.com/watch?v=6DBGIDcBKFw

Useful Links

WWDC 2023 What’s New in managing Apple devices: https://
developer.apple.com/wwdc23/10040

WWDC 2023 Explore advances in declarative device
management: https://developer.apple.com/wwdc23/1004 1

WWDC 2022 Adopt declarative device management: https://
developer.apple.com/wwdc22/10046

WWDC 2021 Meet Declarative Device Management: https://
developer.apple.com/wwdc21/10131

https://developer.apple.com/wwdc23/10040
https://developer.apple.com/wwdc23/10040
https://developer.apple.com/wwdc23/10041
https://developer.apple.com/wwdc21/10131
https://developer.apple.com/wwdc21/10131
https://developer.apple.com/wwdc22/10046
https://developer.apple.com/wwdc22/10046

Downloads

PDF available from the following link:

https://tinyurl.com/MacSysAdmin2023PDF

Keynote slides available from the
following link:

https://tinyurl.com/MacSysAdmin2023Keynote

https://tinyurl.com/MacSysAdmin2023PDF
https://tinyurl.com/MacSysAdmin2023Keynote

