
Getting Started With 
Amazon Web Services

Rich Trouton 
Apple CoE @ 

Before we get started, there’s two things I’d like to mention. The first is that, all of the sides, speakers’ notes and the 
demos are available for download and I’ll be providing a link at the end of the talk. I tend to be one of those folks who 
can’t keep up with the speaker and take notes at the same time, so for those folks in the same situation, no need to 
take notes. Everything I’m covering is going to be available for download.

The second is to please hold all questions until the end. If you’ve got questions, make a note of them and hit me at the 
end of the talk. With luck, I’ll be able to answer most of your questions during the talk itself.



Compute

Amazon 
EC2

Amazon ECR Amazon ECS Amazon 
Lightsail

Elastic Load 
Balancing

AWS Elastic 
Beanstalk

AWS 
Lambda

AWS Batch

Amazon EFS Amazon 
Glacier

Amazon 
S3

AWS Snowball AWS Storage 
Gateway

Storage

Amazon 
DynamoDB

Amazon  
ElastiCache

Amazon 
RDS

Amazon  
Redshift

Database

Amazon  
DMS

AWS Direct 
Connect

Amazon 
VPC

Amazon 
CloudFront

Networking & Content Delivery

Amazon 
Route 53

AWS  
CodeCommit

AWS  
CodeDeploy

AWS  
CodePipeline

AWS  
X-Ray

AWS  
CodeBuild

Developer Tools

AWS 
CloudHSM

AWS Directory 
Service

AWS Certificate 
Manager

AWS ArtifactAmazon 
Inspector

IAM

Security, Identity & Compliance

Amazon 
ES

Amazon 
EMR Amazon 

Kinesis

Amazon 
Athena

Amazon 
CloudSearch

Analytics

I want to start with doing some expectations management. Amazon has many services available and I’m not going to be talking 
about a lot of them.



Compute

Amazon 
Lightsail

Storage

Amazon 
S3

Instead, we’re going to focus on two Amazon services which are easy to get started with: Lightsail and S3. To simplify 
them, S3 is a file storage service and Lightsail is a virtual machine hosting service for Windows and Linux.



Security, Identity & Compliance

Identity & Access 
Management

However, before we get into those, we need to discuss another service: Identity and Access Management; otherwise 
known as IAM. The reason is that setting things up properly in IAM is fundamental before you’ll be able to work 
securely with Amazon Web Services.



Security, Identity & Compliance

Three Rules of Thumb

In working with IAM, I’ve picked up some best practices.



Security, Identity & Compliance

1. Don't log in as root*

*Unless you really need to.

Just like on Unix-based OSs, you have the choice of logging into your AWS account as root or as a non-root user. Just 
like with a Unix-based OS, you can get into a lot of trouble if you run as root all the time.



https://tinyurl.com/msa2018-rootrequired

That said, there are certain tasks that require root login. AWS provides documentation of when those circumstances 
apply.



Security, Identity & Compliance

A. Set a complex password for your 
root account.

B. Enable multi-factor authentication 
(MFA) for your root account.

C. Only log into your root account if 
there is no other option available

So what do you do otherwise with your root account? Protect it by setting a complex password and enabling multi-
factor authentication, then log into it as seldom as possible.





Creating IAM users

https://tinyurl.com/msa2018-createiamuser

Instead, create IAM users and use those to log into your AWS account. The advantage with using IAM user accounts is 
that you can make them as privileged or unprivileged as you need to.



IAM Account Types

 

There’s two general IAM account types, programmatic access and AWS management console.



IAM Account Types

 

The first is programmatic access. These accounts have a username, but don’t have a password because they’re not 
meant to log into the AWS web console. Instead, they get an access key ID and secret access key. These keys are used 
for authentication for the AWS API and other AWS command line and development tools.



IAM Account Types

 

The next kind are AWS Management console access accounts. These accounts have a username and a password 
because they can log into the AWS web console. These accounts can also get an access key ID and secret access key, 
but that leads to my second rule.



Security, Identity & Compliance

2. Do not give access 
    keys to accounts you 
    use to log into the web 
    console.

In general I would not recommend adding keys to an AWS management console account.



IAM Account Types

•AWS Console accounts 
• User accounts 

•Programmatic accounts 
• Service accounts

The reason I don’t recommend adding access keys is that, in my opinion, you should be treating access key-enabled 
accounts like you would a service account and give them only the permissions they need to do a specific job.

Meanwhile, treat your AWS Console accounts like user accounts which only have rights in the admin console and don’t 
have rights for the AWS API or other command line tools. 

In the event that you find that you need to do work with AWS API or other AWS developer tools, set up a separate 
programmatic account and assign it just the rights which are needed.

Having account separation like this may help keep you out of trouble. For example, you may need administrator 
permissions in the AWS web console but on the command line you may only need something like read only access to 
S3. By having two separate accounts, one for console access and one for API work, you can easily accommodate both 
needs while still following the principle of only having the privileges you need to get your work done.



1. Create administrator management console account
2. Create s3_read_write_access programmatic access account
3. Create s3_read_only_access programmatic access account



So now I’ve got three accounts created, but I skipped right past giving them any permissions. They’re powerless. 
Why?



Security, Identity & Compliance

3. Use groups to assign 
    permissions

Last rule, use groups to assign your IAM permissions. The reason why is straightforward: It makes it very simple to 
manage permissions. Want your new hire to have read-write access to S3? Easy, create their account, add them to a 
group with the necessary permissions and their account will inherit those permissions. New hire went power mad and 
trashed the CFO’s files? Pull the new hire’s account from the group and now they’ve got just enough permissions to 
change their password and nothing else.



1. Create Account_administrators group
2. Create s3_read_only_access group
3. Create s3_read_write_access group





Did I come up with these three rules of thumb on my own? Nope, Amazon’s pretty up front with most of them. As you 
can see, I still need to apply a couple more recommended security settings to my account.



https://tinyurl.com/msa2018-enablemfa

Another good idea is to enable multi-factor authentication for your console accounts, which I’ll be referring to as MFA 
elsewhere in this talk. This will help a lot with securing your accounts, especially those accounts with a lot of 
administrative rights. 



As part of setting up MFA, you’ll need to decide to use either a hardware MFA device or a virtual MFA device.



MFA device types

Hardware MFA device Virtual MFA device

A hardware MFA device usually is a physical device that displays a series of codes. A virtual MFA device does the 
same, but displays the codes in an app instead.



Google 
Authenticator Authy

https://authy.com/download/
https://support.google.com/accounts/answer/1066447

Two iOS apps which can be used with Amazon’s MFA are Google Authenticator and Authy. I prefer Authy, so I’ll be 
setting up MFA using that.





Meanwhile, in Authy, this is what it looks like when I scan the QR code and my AWS account is registered.



Once my account was set up, Authy began displaying the MFA codes. Codes are good for about thirty seconds each, 
then they expire and a new code appears.





https://tinyurl.com/msa2018-iampasswordpolicy

The last security measure on Amazon’s recommended list is setting a password policy for your IAM users. It’s pretty 
straightforward for anyone who’s had to manage passwords before, but for those folks who want more information 
about how to set it, please see the link on the screen.



Amazon 
S3

Now that we’ve discussed IAM, let’s take a look at S3 and some interesting things you can do with it to support your 
Macs.



https://tinyurl.com/msa2018-creates3bucket

To start from the very beginning, let’s create an S3 bucket.





https://tinyurl.com/msa2018-uploadtos3

Now that we have our bucket, we should put some stuff in it.





https://cyberduck.io

https://panic.com/transmit/

If you don't want to use the web console to upload files, there are also a number of S3-compatible file transfer 
applications available. My usual choice is Cyberduck, a free open-source GUI tool that supports a number of cloud 
services including S3. Looking at non-free options, Transmit from Panic can work with S3 and there are other 
shareware options available.



https://tinyurl.com/msa2018-hostwebsiteons3

What else? One thing you can do with S3 is host a website. One limitation to be aware of here is that S3 only supports 
hosting static HTML code, so we’re mostly looking at Web 1.0 technology.



http://isnetbootdead.com

However, that capability may be enough to convey the information you want to provide.



Let’s take a look at how this works, starting with setting up a new S3 bucket.



Now that I’ve got my files uploaded, I need to do two more things. The first is to set the S3 bucket’s properties to 
allow it to host a static website.



https://tinyurl.com/msa2018-adds3bucketpolicy

The second is that I need to set a bucket policy. 



S3 bucket policies are JSON documents which tell the specified S3 bucket how to behave in certain situations. You will 
find these kinds of policies used extensively with AWS’s various services, with the main differences being which 
resources are referenced, what permissions are specified and what the actions are.



In this case, I’m telling the S3 bucket that I want it to allow anyone to be able to read the objects stored in the S3 
bucket. This allows anonymous access via the web.



The next part is specifying the S3 bucket in question.



This policy is included with AWS’s documentation and designed to be generic, so the only thing you should need to 
change is putting your own S3 bucket’s name in the policy.





http://msa2018.isnetbootdead.com

Point a custom DNS CNAME record at your S3 bucket’s address and now you have a website for your domain which is 
backed by AWS’s high availability services.

One drawback to hosting a website this way is that the S3 website hosting only uses HTTP and can’t by default use 
HTTPS. There are ways to use AWS’s CloudFront service to address this, but I’m not going to cover that as that’s 
getting beyond the scope of an introduction to AWS.



So, big deal right? I can store files on S3 and I can set up a website using HTTP. But what about supporting Macs 
using S3?



https://github.com/tbridge/munki-in-a-cloud

How about using S3 as a Munki repo? My colleague Tom Bridge has a solution for that called Munki in a cloud.



https://github.com/tbridge/munki-in-a-box

Munki in a cloud grew out of an earlier solution called Munki in a box. Munki in a box was designed to create a basic 
Munki repo on macOS along with installing AutoPkg, AutoPkgr, MunkiAdmin, and MunkiReport PHP. 



However, Munki in a box has Server.app as a pre-requisite. It uses Server’s web services to set up the Munki repo.



As Apple began removing capabilities from Server, including web services, Tom looked around for an alternative and 
made the decision to use S3.



1. A Mac or VM running macOS 10.12.x or later
2. An active AWS account.
3. A programmatic IAM account with:
•Active access key ID and secret access key
•Read and write access to S3

Pre-requisites

So let’s take a look at running Munki in a Cloud. Before we get going, here’s the things we’ll need.



1. Install git if needed.
2. Install the Python pip installer tool if needed.
3. Install the PyOpen SSL module if needed.
4. Install AutoPkg if needed.
5. Install Munki if needed.
6. Install the awscli tool if needed.
7. Set up a Munki repo and set the logged-in user as the owner.
8. Add specified AutoPkg repos.
9. Run specified AutoPkg recipes to populate the Munki repo.
10. Install AutoPkgr.
11. Install Munki Admin.
12. Configure AutoPkgr's recipe list.
13. Set up default manifest using the packages added to the Munki repo.
14. Set up new bucket in S3 service.
15. Synchronize Munki repo with S3 bucket.

Once we have the prerequisites handled, here’s what Munki in a cloud will do.



https://aws.amazon.com/cli/

One of the jobs is installing the aws command line tool. This is a Python utility to allow management of AWS services 
via the command line.



In our case, it’s going to be installed to usr local aws bin.



As part of the installation, a symlink will be set up in usr local bin so that the default path environment will pick it up.









aws s3 sync /path/to/munki_repo s3://S3_BUCKET_NAME_HERE --exclude '*.git/*' --exclude '.DS_Store' --delete

Now that I’ve got my repo up in S3, how do I update it? Running the command shown on the screen will tell the aws 
command line tool to update my S3 bucket with the current contents of my Munki repo. 

It’ll also tell the sync process to ignore certain unwanted files and to delete from the S3 bucket anything that isn’t 
currently in my repo.





Well, this is great. I've got my Munki repo set up in S3 and life is good. How do I tell my Mac to use it?



One option is to make your Munki repo public using a bucket policy similar to the one used to set up a website in S3.



Public S3-hosted 
Munki repo 

1. No special authentication needed.
2. Requires S3 bucket be configured to allow 

anonymous read-only access.
3. Mac can be configured to access repo without 

additional plug-ins or tools required.
4. Address of repo:

• https://s3-bucket-name-here.s3.amazonaws.com

If the only things you're putting into your Munki repo are items publicly available elsewhere on the Internet, this may 
be a valid option for you. In this case, you're treating S3 like you would any other webserver which allows anonymous 
read-only access.





https://github.com/waderobson/s3-auth

For those folks with security needs that rule out using a publicly accessible S3 bucket, there are other options. One 
option was developed by Wade Robson, who wrote a Munki middleware solution that allows Munki to connect securely 
to a S3 bucket which doesn't permit anonymous access.



1. Munki version 2.7.0 or higher
2. An active AWS account.
3. Munki repo stored in an S3 bucket
4. A programmatic IAM account with:

•Active access key ID and secret access key
•Read-only access to S3 bucket

Pre-requisites



https://github.com/waderobson/s3-auth/wiki

Once the pre-requisites are handled, the setup is straightforward. Munki is configured with the address of the S3 
bucket along with the appropriate AWS region and the authentication credentials.





https://github.com/AaronBurchfield/CloudFront-Middleware

https://blog.eriknicolasgomez.com/2018/01/25/Automated-CloudFront-invalidation-rules/ 

You can also leverage CloudFront with S3 to get expiring URLs for downloads and also lower your overall costs. 
However, this is a more advanced topic and I'm not going into detail on it. For those interested in exploring those 
options, I recommend checking out Aaron Burchfield's tools on GitHub and also Erik Gomez's blog post.



https://tinyurl.com/msa2018-create_jamf_cloud_dp

For folks using Jamf Pro, you can also use S3. In my own shop, we’re using an S3 cloud distribution point with our 
Jamf Pro service. 

The process of setting up a cloud distribution point on S3 gets into some more advanced areas, so for those 
interested, I recommend checking out the link on the screen as I’ve documented the process. As part of setting up the 
cloud DP, you will need to get a particular encryption key pair which is only accessible by the root user of the account. 
This is going to be one of the exceptional cases when you need to log in as the root user of the account to get 
something done.



Hosting in S3 allowed us to retire a large number of local distribution points in favor of one global distribution point. 
Once new software is uploaded to S3, it’s instantly available worldwide.



Amazon 
Lightsail

Sometimes you need more than storage. You need a server. This is where AWS services like Lightsail come in. 
Lightsail is a simplified interface for AWS's EC2 service.



Why use Lightsail over EC2 if you’re getting started? One reason is user experience. Here’s how EC2 looks if you don’t 
have any instances set up.



Here’s what Lightsail looks like. For a beginner to AWS, it’s a much smoother and self-explanatory experience.



https://aws.amazon.com/lightsail/

Lightsail is designed to get someone quickly set up with a virtual server, using a variety of application templates.



In addition to Linux, Windows Server 2012 and 2016 are supported along with SQL Server.



https://tinyurl.com/msa2018-lightsail-start-script

One nice feature of Lightsail is that if you’re using Linux, you can add a script to configure the instance when it starts 
up for the first time.



https://github.com/wdas/reposado
https://github.com/jessepeterson/margarita

We’re going to use that capability to create a Linux instance running Reposado and Margarita. For those not familiar 
with these tools, Reposado is an open-source utility that allows you to host and distribute Apple software updates. 
Margarita is a complementary open-source tool for managing Reposado using a web interface.



https://github.com/opragel/reposado_margarita_apache_install

For this task, I’m going to use a script written by my colleague Owen Pragel as the setup script.









What if you want to use your own SSH keys with a Lightsail instance?



You can also set up a Jamf Pro server on Lightsail. To help me with this process, I’m setting up a new S3 bucket which 
allows public access to its contents.



Inside that bucket, I’m putting a copy of the latest Linux installer for Jamf Pro.





https://github.com/rtrouton/aws_lightsail

For those who want a copy of the scripts I used with my Lightsail examples, I’ve posted them to Github. They’re 
available via the link on the screen.



So for folks who were looking at Server’s decline and wondering what’s next, hopefully the information I’ve given you 
is helpful in getting you started with the services available from Amazon.



Useful Links
AWS Getting Started Resource Center: https://
aws.amazon.com/getting-started/

AWS 10-Minute Tutorials: https://aws.amazon.com/
getting-started/tutorials/

Getting Started with IAM: https://aws.amazon.com/iam/
getting-started/

Using AWS S3 to Store Static Assets and File Uploads: 
https://devcenter.heroku.com/articles/s3



Useful Links
Getting Started with Lightsail: a Simple VPS Solution 
from AWS: https://linuxacademy.com/howtoguides/
posts/show/topic/12662-getting-started-with-lightsail-a-
simple-vps-solution-from-aws

Getting started with AWS: https://medium.com/tfogo/
getting-started-with-aws-d7c51133fc92

How to serve your website on port 80 or 443 using 
AWS Load Balancers: https://medium.com/tfogo/how-
to-serve-your-website-on-port-80-or-443-using-aws-
load-balancers-a3b84781d730



Downloads
PDF available from the following link:

http://tinyurl.com/MSA2018AWSPDF

Keynote slides available from the 
following link:

http://tinyurl.com/MSA2018AWSKeynote


