

Numeral Systems

11 101 010
 3 5 2
 234

Binary
Octal
Decimal

041 LXI H, ;Initialise Memory pointer to 0x01DB
333 IN 1 ;Read UART data register (skip the status register)
001
276 CMP M ;Compare with data stored at memory pointer
312 JZ 0001 ;Loop back if data is the same as stored
001
000
053 DCX H ;When it's a different byte, decrement the memory pointer
167 MOV M,A ;and save in memory
303 JMP 0001 ;Loop back for the next byte.
001
000

12 Byte 2SIO Bootstrap Loader

Source: http://just8bits.blogspot.com/2017/03/doing-it-in-less-than-bill-gates.html

000:041 256 017 061 022 000 333 000
010:017 330 333 001 275 310 055 167
020:300 351 003 000

20 Byte 2SIO Bootstrap Loader

Photo: Ed Uthman - originally posted to Flickr as Apple I Computer

Photo: Cynde Moya

Photo: Binarysequence

https://commons.wikimedia.org/wiki/User:Binarysequence

Source https://github.com/macmade/XS-Computer-One/

Apple 1 Processor Section - © Apple Computer Company 1976

Block diagram of the Apple 1 courtesy of sbproducts.com

Apple][Boot Process

1. Power on

2. Loads initial code from ROM to initialise the hardware

3. Load Integer BASCI (or System Monitor) from ROM

4. User initiates boot from expansion code ROM (here slot 6) using  
PR#6 (Integer BASIC) or 
C600G (System Monitor)

The Apple II Plus included the ability to scan each expansion slot for a
bootable expansion card ROM and automatically call it (starting with
slot 7 down to slot 1).

Apple][Boot Process

5. Expansion card ROM boot code attempts to boot from drive 1 of
the controller by reading 256 bytes from sector 0 of track 0.

6. Sector zero contains a program to read sectors 0 through 9 of
track 0 into memory using part of the ROM boot code.

7. The program in sectors 1-9 of track 0, including the complete
RWTS code, proceeds to load tracks 1 and 2 – the rest of DOS.

8. Relocate DOS as high into system memory as possible  
(System master disks determine the computer's RAM config).

9. Once DOS is loaded into memory, it attempts to load and execute 
a startup program as indicated in the DOS program code.

Photo: Shieldforyoureyes Dave Fischer

Apple Macintosh Boot Process

1. Power on

2. Load Macintosh Toolbox from ROM

3. Toolbox executes memory test

4. Toolbox enumerates devices

5. Toolbox start on-board video  
or optional ROM from NuBus or PCI video card

6. Toolbox check for floppy disk  
and scan all SCSI buses for disks with a valid System Folder

Apple Macintosh Boot Process
7. Attempt to start the system 

giving preference to setting in parameter RAM:

a. Happy Mac logo is displayed, if bootable disk is found.
Hand over control to Mac OS.

b. Floppy disk with flashing question mark is displayed,  
if no disk to boot from is present.

c. Sad Mac icon and hexadecimal error code are displayed,
if a hardware problem occurs during the early part of
the boot process.  
This will be accompanied by the Chimes of Death on Macs
made after 1987.

Original Macintosh System Software 1.0

Macintosh Toolbox
"The Macintosh Toolbox encompasses a
number of system software routines,
most (but not all) of which help present
your application’s interface to the user.
Some of these routines include those
provided by the Event Manager, Menu
Manager, Window Manager, Control
Manager, Dialog Manager, Help Manager,
Resource Manager, and Scrap Manager."

https://developer.apple.com/legacy/library/documentation/mac/pdf/MacintoshToolboxEssentials.pdf

Macintosh Toolbox
• 64kB ROM

• A-trapping: clever usage of the M68k's 
illegal opcode exception handling, but
required emulation on PowerPc

• ROM increasingly hard to maintain

• Low level code:
• hardware initialisation & drivers
• diagnostics

• High-level code:
• User interface components
• Operating system components

• Most of the Toolbox moved to Carbon API

https://www.gryphel.com/c/minivmac/screens/index.html

https://web.archive.org/web/20010413153004/http://developer.apple.com:80/technotes/tn/tn1167.html

1. Boot ROM – the hardware-specific firmware

• power-on self test (POST) and diagnostics

• start-up code without Mac OS-specific code

• Open Firmware (version 3.0)

• Mac OS drivers for motherboard devices needed at boot time (ndrv's and nlib's)

2. bootinfo file is kept in the system folder of the startup volume

• Mac OS-specific Open Firmware code and required "bootinfo" components

• Open Firmware-specific Mac OS code ("Trampoline" code)

• Mac OS Toolbox ROM Image (Mac OS ROM file in system folder)

• and other Mac OS software

New World Boot Architecture

Open Firmware / OpenBoot

• IEEE 1275-1994 standard 
originated at Sun, also used by Apple, IBM, and ARM

• Forth language based shell 
Allows to interactively develop and test

• FCode is highly compact platform independent byte code 
Allows for platform-independent boot-time diagnostics,
configuration code, and device drivers on PCI cards.

• Standardised system hardware description 
Reducing need for user configuration and hardware polling.

• PowerPC Macs: ⌘ Cmd +⌥ Option + O + F

New World Boot Process Overview

1. User presses power key.

2. Between the time that the power key is pressed and the boot beep is heard, while the
screen is still black, a ROM checksum is taken, the processor is checked, the interrupt
controller is started, all the clocks are determined, the memory controller is initialized,
NVRAM is checked, RAM is sized checked and initialized, and the L2 cache is sized and
prepared (L2 cache is enabled in POST).

3. The POST code runs: preliminary diagnostics, boot beep, initialisation, and setup.

4. Open Firmware initialises and begins execution, including building the Device Tree.

New World Boot Process Overview

5. Open Firmware looks for a boot device and loads the bootinfo file  
(based on defaults and NVRAM settings).

6. Open Firmware executes the bootinfo Forth script to read the Trampoline code  
and the Toolbox ROM Image (Mac OS ROM image file of type tbxi in system folder).

7. bootinfo script transfers control to the Trampoline code, which functions as the
transition between Open Firmware and the beginning of the Mac OS execution.

8. The Trampoline code gathers information about the system from Open Firmware,
creates data structures based on this information, and terminates Open Firmware.

9. The Trampoline code transfers control to the Toolbox ROM Image initialisation code.

BootX
• BootX is a boot loader for use on the PCI Power Macintosh 

to start-up Mac OS X.

• BootX can load kernels in Mach-o and ELF formats. This
allows it to load kernels or second stage loaders for Mac OS
X, Linux, OpenBSD, NetBSD, and FreeBSD.

• BootX understands a diverse series of filesystems:  
HFS+, 4.4 BSD Big Endian UFS (Mac OS X only, slightly
incompatible with the other BSDs), ext2, as well as loading
kernels over any OpenFirmware via tftp.

• The program is freely available as part of the Darwin OS
under the Apple Public Source License.

https://web.archive.org/web/20070309142504/http://www.cs.rpi.edu/~gerbal/BootX.pdf

Mac OS X Boot Process on PowerPC

1. User powers on device

2. Machine runs low-level initialisation

3. Open Firmware initialises and begins execution, including
building the Device Tree.

4. Open Firmware looks for a boot device and loads the

bootinfo file (based on defaults and NVRAM settings).

5. Open Firmware executes the bootinfo Forth script and
loads loads a file BootX of type tbxi from the boot device  
/System/Library/CoreServices and executes BootX.

https://web.archive.org/web/20080706145146/http://developer.apple.com/documentation/MacOSX/Conceptual/BPSystemStartup/Articles/BootProcess.html

https://web.archive.org/web/20080706145146/http://developer.apple.com/documentation/MacOSX/Conceptual/BPSystemStartup/Articles/BootProcess.html#//apple_ref/doc/uid/20002130-115736-TPXREF104

Mac OS X Boot Process on PowerPC
6. BootX reads root partition out of nvram.

7. BootX loads mach kernel from the device.

8. BootX copies Mac OS X device drivers from partition into memory.

9. BootX disables all address translations.

10.BootX starts Mac OS X mach kernel.

11.mach kernel begins its boot process.

12.mach kernel may use an integrated linker to link Mac OS X device
drivers into itself if it is necessary to complete booting.

13.mach kernel unlinks the integrated linker to save memory.

14.mach_init, init, or launchd take over as root system process.

With Mac OS X 10.2 Apple changed from the coloured 'Happy Mac' to the grey Apple logo as boot splash.

Intel Mac Boot Process

Based on https://eclecticlight.co/2018/08/25/booting-the-mac-visual-summary/

Intel Boot Guard

• Proprietary closed standard implementing a Verified Boot mode  
to cryptographically verify the integrity of the initial boot block (IBB – boot components)

• Not much documentation or images available to play with.

• Root of Trust stored in Field Programmable Fuses (FPFs), 
programmed during manufacturing mode and some of PC vendors forget to close the fuse :(

• Relies on Intel BIOS Authenticated Code Modules (ACM).

• Would be nice if Apple could publish a KB or TechNote on this subject,  
maybe as part of an macOS Security Guide?

Alex Ermolov @ ZerNights - https://2016.zeronights.ru/wp-content/uploads/2017/03/Intel-BootGuard.pdf  
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/security-technologies-4th-gen-core-retail-paper.pdf

https://2016.zeronights.ru/wp-content/uploads/2017/03/Intel-BootGuard.pdf

Boot Device Selection

• Traditionally using bless command to

• declare volume as bootable in the volume header,

• sett NVRAM variables efi-boot-device and efi-boot-device-data,

• copy boot.efi to the right place, and/or

• configure the Mac to boot using NetBoot.

• System Image Protection introduced systemsetup -setstartupdisk  
but sudo bless --getBoot --verbose still works.

• APFS introduced the APFS Preboot volume for the initial boot stage 
diskutil apfs list

• APFS introduced a root folder structure based on GUIDs per boot volume

Apple T2 and Secure Boot

The T2 chip and SecureBoot add more complexity to the PreBoot volume:

• Certificates and signatures for OS components stored in .im4m file format  
(use openssl asn1parse), e.g. boot.efi.j137ap.im4m

• Medium security operates with OS specific but system generic .im4m files

• Full security mode requires the .im4m to be system specific based  
on a unique Exclusive Chip Identification (ECID),  
e.g. boot.efi.j137ap.1234567890ABCD.im4m

• This uses a new personalisation process using the Signed Hash protocol (SHSH)
following the known process from iOS to validate firmware signatures.

http://michaellynn.github.io/2018/07/27/booting-secure/  
https://www.theiphonewiki.com/wiki/ECID  

https://www.theiphonewiki.com/wiki/SHSH

https://www.theiphonewiki.com/wiki/ECID

Apple T2 and Secure Storage

“Data on your iMac Pro built-in, solid-state drive (SSD) is encrypted using a hardware
accelerated AES engine built into the T2 chip. The encryption is performed with  

256 bit keys tied to a unique identifier within the T2 chip.”
Apple 'About encrypted storage on your new Mac' https://support.apple.com/en-us/HT208344

• T2 chip connects SSD to CPU via Non-Volatile Memory Express (NVMe)

“Data on your iMac Pro built-in, solid-state drive (SSD) is encrypted using a hardware
accelerated AES engine built into the T2 chip. The encryption is performed with  

256 bit keys tied to a unique identifier within the T2 chip.”
Apple 'About encrypted storage on your new Mac' https://support.apple.com/en-us/HT208344

• T2 chip connects SSD to CPU via Non-Volatile Memory Express (NVMe)

Apple T2 and Secure Storage

Apple T2 and Secure Storage

“Data on your iMac Pro built-in, solid-state drive (SSD) is encrypted using a hardware
accelerated AES engine built into the T2 chip. The encryption is performed with  

256 bit keys tied to a unique identifier within the T2 chip.”
Apple 'About encrypted storage on your new Mac' https://support.apple.com/en-us/HT208344

• T2 chip connects SSD to CPU via Non-Volatile Memory Express (NVMe)

• T2 coprocessor and the SSD chips are uniquely bound together (fused)

• T2 chip does hardware-accelerated AES block level encryption/decryption  
using XTS-AES and 128 bit blocks with a 256-bit key

• Apple's docs developing, see Pepijn Bruienne's article 'Apple iMac Pro and Secure Storage' 
https://duo.com/blog/apple-imac-pro-and-secure-storage

https://duo.com/blog/apple-imac-pro-and-secure-storage

• boot.efi software (“OS X booter”)
• system specific
• replacing BootX
• confusingly referred to by Apple as BootROM

• config /Library/Preferences/SystemConfiguration/com.apple.Boot.plist

• Main tasks

• built the device tree, IODeviceTree, which lists all the devices in that Mac

• "snag keys" – startup key commands

• display login UI for FileVault2

• gather kernel options and parameters

• check kernel cache (unified prelinked kernel OS X 10.7+) or identify and link (slow)

• start kernel

• kernel initializes the Mach and BSD data structures and then initializes the I/O Kit.

Unified Extensible Firmware Interface

https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/booting/booting.html

https://duo.com/assets/ebooks/Duo-Labs-The-Apple-of-Your-EFI.pdf

Thank You!

Marko Jung
Galactic Viceroy of Research Excellence

https://github.com/mjung/publications

m@mju.ng @mjung fb.com/markohjung

