Signed, Sealed and Delivered

Jonathan Levin

MacSysAdmin 2017 (1/2)

© 2017 Technologeeks.com,
NewOSXbook.com

Follow along

e http://NewQSXBook.com/files/jtool
— Or http://NewQSXBook.com/tools/jtool.html

e http://NewOSXBook.com/files/MSA2017CS.pdf

Code Signing

* Applies digital signatures to executables

— Ingredients:
* Hash function (SHA-1 or SHA-256)
* Private key (known to signer)
e Public key (known to the world)
» Certificate (authenticating public key as a “trusted” key)

— Mach-0 loader (in kernel) enhanced to validate signatures

* Actually carried out in kernel and external extensions (via MACF)

Code Signing in Apple’s OSes

* Apple introduced code signing as far back as OS X 10.5
— In OS X, creeping in as of 10.8 (GateKeeper) and Mac App Store
— IniOS, brought along with the App Store

 Other OSes can code sign too, but Apple is parsecs ahead:
— Novel implementation, far more efficient than Linux or Android’s
— Provides a rich substrate for all of Darwin’s system security measures
— Enables Entitled binaries (and, indirectly, SIP)
— Enables Code Requirements

Motivation for Code Signing

* Obvious motivation: Authenticate software origin
— Greatly mitigates any potential for malware as Apple vets its Devs

¢ Secondary motivation: Security profiles embedded in signature
¢ OS X and iOS declarative security — entitlements — part of signature

+ Unexpected bonus: Hegemony over software distribution
¢ Only code signature allowed in iOS is Apple’s.
¢ OS X still allows any signature (or even unsigned code). For how long?

L

LC CODE SIGNATURE

LC_CODE_SIGNATURE command points to a code signature “blob”

Key component of blob is the “Code Directory”
— Version: 0x20001 through 0x20400

— Flags: Usually none, but “adhoc” (*OS) or others (see later)
— ldentifier: reverse DNS notation unique ID
— CDHash: SHA-1/SHA-256 “mega-hash” of code slots

All fields are big endian (in case PPC ever makes a comeback)

Signature can also be “detached”, (i.e. separate file)
— PopulariniOS 11 for “removable” built-in Apps

LC_ CODE_SIGNATURE cmdsize

DataofTf datasize
(Offset of superblob from Mach-O header) (overall length of superblob)
- OxFADEOCCO size
Superblob Magic
Num Blobs Blob[O] ..

Blob[O] offset

OxFADEOCO2
Code Directory Magic

OxXFADEOCO1
Requirements Vector Magic OXEADEOCOO
Single Requirement Magic
OxFADEOBO1

CMS Signature Magic

0x20001
0x20100
0x20200

N/A
2422
2782

Modern features
ScatterOffset
TeamOffset

Flags valid in Mach-O

|

0x0002 ADHOC
OXFADEOCO02 | ength 0x0004 GET_TASK_ALLOW
CD Magic(CSMAGIC_CODEDIRECTORY) (overall length of code directory blob) 0x0200 KILL
_ 1l | ags 0x0400 CHECK_EXPIRATION
Version (Only 0xO0003E02 bits are valid here) | 0x0800 RESTRICT
hashOffset 1dentOffset 0x1000 ENFORCEMENT
(Offset to first code page slot) (Offset of code signing identity string) 0x2000 REQUIRE_LV
nSpecialSlots nCodeSlots
(# of non-code items signed) (# of code pages signed)
IMma hash hash page
codeL m It Size Type Platform Size
(Max offset of code signature span) (10g2)
spare?2 scatterOffset
(Left unused) (scatters hash array.Jf defined)
teamOffset spare3
(offset of Team Identifier) (Left unused) \
20/1 SHA-1
32/2 SHA-256

A\ 4

OxXFADEOCO2 length
CD Magic(CSMAGIC_CODEDIRECTORY) (overall length of code directory blob)
. flags
version (Only 0x00003E02 bits are valid here)
hashOffset 1dentOffset
(Offset to first code page slot) (Offset of code signing identity string)
nSpecialSlots nCodeSlots
(# of non-code items signed) (# of code pages signed)
Ima hash hash page
codeLi m it Size Type Platform Size
(Max offset of code signature span) (10g2)
S e rma P T T e S L =
Special slot [-nSpecialSlots] Hash of type hashType
: ~-~~-~-~~-~~-~-~~-~~-~-_iiiii ~~~~~~~~~~~~~~~~~~~~~~~ -: L nSpecialSlots, if any,
s U k are negative, from -1
] Special slot [-1] Hash of type hashType ;

L_nCodeSlots are 0 or greater,

and each provides the hash of
hashType of hashSize bytes,

Slot[nCodeSlots -1] code page Hash (up to codeLimit) for a page of pageSize bytes

hashS ine bytes

Code Slots

* File pages are individually hashed into “slots”, at indices 0+

— Choice of algorithm specified in CDHash “HashSize/Type”
— MacOS < 12: SHA-1 MacOS >=12: SHA-256

* Ancillary data also hashed into “special slots”
— Special slot have to occupy negative indices
— Unused indices must be claimed if (abs) higher indices needed

Bound Info.plist (Manifest)

Internal requirements

Resource Directory (_CodeResources)
Application Specific (largely unused)
Entitlements (bound in code signature)

Example: Code signatures

« Apple’s tool: codesign (-d —=vvvvvvvvVvvvVvy.....)

 jtool --sig

© 2017 Technologeeks.com, NewOSXbook.com

GateKeeper and Code Signatures

« Contrary to popular belief, GK doesn’t enforce Code signing

Gatekeeper (Apple dramatization) Gatekeeper (Real Life)

-
of .

© 2017 Technologeeks.com, NewOSXbook.com

GateKeeper and Code Signatures

« Contrary to popular belief, GK doesn’t enforce Code signing

 If started by launchd: (e.g. via Finder GUI)
— com.apple.quarantine xattr is respected
— Quarantine.kext prevents unquarantining xattr
— syspolicyd is consulted
— Pop up is displayed to user
— User chooses to approve (via System Preferences)
— syspolicyd is updated

 If started from unquarantined (or uncaring) process:
— Err.. OK

© 2017 Technologeeks.com, NewOSXbook.com

Enforcing code signatures

» Using syscitl:
TP M sysctl v | grep cs_

vim.
vim.

vm
vm
vm
vm
vm

vm

cs_force_kill: ©
cs_force_hard: 8
.cs_debug: ©

.Cs_all _wvnodes: ©

.Cs_enforcement: ©

.cs_enforcement_panic: ©
.cs_library_validation: B
vm.
vm.
vm.
vm.
.cs_blob_size_max: 8896512

cs_blob_count: 816
cs_blob_size: 29667456
cs_blob_count_peak: 1831
cs_blob_size_peak: 35977312

* Try: sysctl vm.cs_enforcement=1

© 2017 Technologeeks.com, NewOSXbook.com

code signed by

All your ases betonrgto.us

 If code signing is enforced, signature MUST lead to Apple

— Apple signs built-ins with Root/Apple Code Signing/Software Signing
— Third party apps signed with Root/WWDR/MacOS App Signing
— Provisioning profiles signed with Root/WWDRY/.../[Dev/Ent] Profile

« Greatly reduces — but not elimitates - malware exposure
— Lots of dev-signed malware coming through DMGs out there
— APTs can infect existing processes via ROP or other

« Might disable innocent, but not Apple-compliant code
— Read: procexp, jtool, and pretty much anything @NewOSXBook

* Yours truly can’t get a developer certificate ®

© 2017 Technologeeks.com, NewOSXbook.com

csops| audittoken]

int csops(pid t pid, unsigned int
int csops audittoken (pid t pid, unsigned int

void * buf,
ops,

ops,

size t size audit token t * token);

Table 5-28: The various code signing operations (as of XNU 3247)

#| cs_opPs_code Purpose

0 _STaT_us - Query code signing bits

4 | pipPaTH Retrieve executable path (deprecated in 24xx)
5 | _copHAsH Retrieve Code Directory Hash

6 | PIDOFFSET Retrieve text offset

7 | entrTLEMENTS BLOB|Retrieve entitlements blob

11| _1pENTITY Retrieve code signing identity

10| _BroB Retrieve entire code signing blob

1 | MARKINVALID Sets the invalid bit. This might lead to killing process
2 | MARKHARD Sets the hard bit (does not kill)

3 | MARKKILL Sets the kill-if-invalid bit

8 | MARKRESTRICT Sets the restricted bit

9 | _seET_sTaTus Sets multiple code signing bits simultaneously

© 2017 Technologeeks.com, NewOSXbook.com

size t size);
void *buf,

csops| audittoken]

« csops(2) allows various code signing operations:
— Blob is retrieved from kernel space, therefore implicitly trusted.

« Thanks to csops(2), signatures provide a wide substrate:

— Requirements define specific validation constraints
— Entitlements: allow high level declarative permissions

« Code signature valiation built into procexp (‘CS’ column)

— Simple test binary: http://NewOSXBook.com/tools/cs
— Run with any PID as an argument to validate status and dump blobs

© 2017 Technologeeks.com, NewOSXbook.com

Entitlements

 Probably the most ingenious security mechanism ever

« Staggeringly simple:
— XML plist with textual entitlements as declaratory permissions
— Have entitlement = can perform operation
— Don’t have entitlement = bugger off (even as root!)

« Surprisingly effective:
— XML plist is embedded in code signature AND signed
— Provisioning profiles barred from arbitrarily entitling themselves
— All other entitlements can only be signed directly by Apple.

© 2017 Technologeeks.com, NewOSXbook.com

Entitlements

* View any binary’s entitlements using jtool -ent
morpheus@Zephyr [(=) SGRTTIEESTUIST T, TN

<?xml version="1.8" encoding="UTF-8"7?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

<dict>
<key>com.apple.system-task-ports</key>
<true/>
<key>task_for_pid-allow</key>
<true/>
</dict>
</plist>

* Retrieved programmatically by csops[audit token]
— Validation is then a simple CFDictionaryGetValue()
— SecTask*Entitlement* APIs provide simple interface

 Find a comprehensive, searchable database at
http://NewOSXBook.com/ent.jl

© 2017 Technologeeks.com, NewOSXbook.com

Code signature requirements

Can be specified as a (CSReq) blob in signature

— Blob signed separately, in special slot -2

Can also be validated on the fly:

OSStatus SecRequirementCreateWithStringAndErrors
(CFStringRef text,
SecCSFlags flags, CFErrorRef *errors,
SecRequirementRef * nonnu 11 CF_RETURNS RETAINED requirement) ;

Verification fetches blob for kernel (csops)
— Performs the rest in user mode.

csreq(1) is an “expert tool for manipulating requirements”

© 2017 Technologeeks.com, NewOSXbook.com

Code signature requirements

AMFI Developer Requirement

Specific exemption

AMFI Basic requirement:

(anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.12] exists) or
(anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.2] exists) or
(anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.7] exists) or
(anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.4] exists)

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] and
certificate leaf[field.1.2.840.113635.100.6.1.13] and

certificate leaf[field.1.2.840.113635.100.6.1.18] and

certificate leaf[subject.OU] = "6KR3T733EC"

(anchor apple) or

(anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.9] exists) or

(anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists and
certificate leaf[field.1.2.840.113635.100.6.1.13] exists) or

(anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.9.1] exists) or

((anchor apple generic and certificate leafffield.1.2.840.113635.100.6.1.12] exists) or

(anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.2] exists) or

(anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.7] exists) or

(anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.4] exists)

© 2017 Technologeeks.com, NewOSXbook.com

1 iso /

2 member-body

o » WDN

©

113635 appleOID

100 appleDataSecurity

1 appleTrustPolicy

1
12
13
14
15
6
s
appleSecurityAlgorithm
appleDotMacCertificate 2
appleExtendedKeyUsag

iChat Signing

iChat Encryption

System Identity

Safari Extensions

3rd Party Mac Dev Installer
Mac Provisioning Profile
CSR signing

Developer ID Installer
Passbook signing
Website Push Notification
Profile Signing

QA Profile Signing

Apple Signing
.Mac

Apple Dev Connection

D o~ WD

appleCertificatePolicies .
appieCertificateExtension& "

1
3
6.1 Mac App Store Receipt
ApplelD Sharing

12 Mobile Store

1 Code Signing

2 Intermediate Marker:

3_ Apple Push Notification Service

1 APS Dev

2 APS Production
34,5 VoIP Push

6 WatchKit

Security.framework open sources: /trust/SecPolicyPriv.h

1 WWD relations CA
6 Developer ID CA

© o0 N o M~ DN

11
12
13
14
16
17
18
21
25
26
32,46
39

iOS Software Dev Signing

iOS Software Submission Signing
Safari Extensions

Software Submission Signing
Mac Installer Packages

Mac App Store App

Mac App Store Installer Package
Mac App Store Receipt Signing
Software Development Signing
Developer ID Applications
Developer ID installers

Apple Pay/Passbook

Website Push Notification
Developer ID Kexts

OS X Server Authentication
TestFlight Distribution (25.1, 25.2)
Enhanced Passbook Certificates
Apple Pay Merchant Services

Provisioning Encryption

Code signature requirements

AMFI Developer Requirement | (Software Submission Signing) or

Specific exemption

AMFI Basic requirement:

(Software Development Signing) or
(iOS Software Dev Signing) or

(i0S Software Submission Signing)

anchor apple generic and Developer ID CA
and certificate Developer ID Applications and
Developer ID Kexts and

certificate leaf[subject.OU] = "6KR3T733EC"

(anchor apple) or

(Mac App Store App) or

(anchor apple generic and Developer ID CA and Developer ID Applications) or
(Mac App Store App.1) or (Software Development Signing) or

(i0OS Software Dev Signing) or

(Software Submission Signing) or

(I0OS Software Submission Signing)

© 2017 Technologeeks.com, NewOSXbook.com

Code Signing: behind the scenes

 When a Mach-O binary is loaded:
— Code signature blob and CodeDirectory is validated
— Entire blob is stored in kernel's UBC

* On page fault:
— Blob of binary is located in UBC
— Corresponding page slot in CodeDirectory is retrieved
— Faulting page is hashed accordingly
— If hashes match, swell

— If not:

« CS_HARD: Page mapping fails, process may try to recover
 CS_KILL: Process is killed on the spot with a SIGKILL.

© 2017 Technologeeks.com, NewOSXbook.com

The Unholy Trinity: MACF, AMFI & Sandbox

amfid loads libmis.dylib (*OS)
or Security.framework (MacOS)
to perform validation

Only if all MACF modules approve,

syscall/mach_trap will be executed .
amfid sandboxd
User mode process
P ..dylib
A ? I 1
Process perfoms a system If not adhoc, AMFI mach I : :
call (or mach trap) messages amfid to verify | | |
il CMS (RFC3852) blob | I |
|
| |
I
sysent/mach_trap_table AMFI hooks 1 } !
Corresponding function in ..check_signature :

A

AppleMobileFilelntegrity

kernel is called from table

A 4

A\ 4

Sandbox uses AppleMatch
for profile evaluation, and

Syscall/trap #n Trust Cache

= = = = == =

mach messages sandboxd
Function calls out to Mandatory 'y g
Access Control Framework i AMFI looks up CDHash of |
Mach-O in its trust cache 1
(for adhoc binaries, *0S) y
MACF - > sandbox
MACF checks if any policy modules requested to hook AppleMatch

the particular functionality in their policy (Code
Signing: exec calls check_execve and check_signature)

The sandbox modules
hooks most other functions

AppleMobileFilelntegrity.Kext

MAC policies have some 330+ callouts. AMFI| cares about:

mpo_cred_check label update_execve = MAC Label* needs to be updated as a result of process launching
(exec)

mpo_cred_label_init/associate/destroy MAC Label* lifecycle

mpo_proc_check _interit_ipc_ports resets task/thread ports for setuid/setgid programs

mpo_proc_check mprotect mprotect(2) invoked (iOS prevents r-x from ever getting +w)
mpo_proc_check _map_anon mmap(2) invoked with MAP_ANON

mpo_proc_check_get task task _for_pid trap (the holy grail of debugging/tracing/pwning) invoked
mpo_vnode check exec exec(2) is invoked

mpo_proc_check cpumon CPU Usage Monitoring parameters
mpo_proc_check_run_cs_invalid Code Signature is invalid — AMFI gets a chance to save process
mpo_vnode_check_signature Signature blob is added to Unified Buffer Cache

* MAC Labels are used in the implementation of sandboxing — but that’s for another presentation (and the book)

10.11 and rootless

« OS X 10.11/i0S 9 introduce “rootless” security
— /System/Library/Sandbox/rootless.conf

* Root it still there, but restricted via default sandbox profile
— /, lusr, /bin, /sbin now all protected from any modification

(chflags on 10.11 will show “restricted”)

« Can be disabled (OS X), though only via recovery mode

— Orvia an in kernel call to csr_set_allow_all.

© 2017 Technologeeks.com, NewOSXbook.com

Rootless entitlements

Install[.inheritable] Bypass all filesystem checks

kext-management Kextload like it's 2009

Restricted-block-devices Access raw disks (/dev/diskXXX devices)
Restricted-nvram-variables Access SIP configuration via csr-data NVRAM

Storage.xxx Access files flagged with xxx in com.apple.rootless xattr
Volume.vm Manage swap on a logical volume

Xpc.bootstrap Push launchd(1) around (set up XPC domains and services)
Xpc.effective-root (Nearly) Unlimited XPC power

© 2017 Technologeeks.com, NewOSXbook.com

Hark these words

The day is near when Apple enforces cs by default
— They did it for the *OS variants, and look what that got us

First they came for root (SIP). Now for your developers
— Devs will have no choice but to get a provisioning profile

Overall, software security is likely to benefit from this
— Software of unknown origins will be denied
— Blacklisting will become far easier

Not clear if this will put an end to malware
— Unlikely — and will likely incite more sophisiticated malware.

© 2017 Technologeeks.com, NewOSXbook.com

Questions? Comments?

ooooooooooooooooooooooooooooooooooooo

