
Tools and Process for
Streamlining Mac Deployment

Tim Sutton
Concordia University, Faculty of Fine Arts

Montreal

Things change

Release cycle

• Annual releases of macOS, iOS

• Mid-cycle features added in iOS, Server (i.e. iOS 9.3 EDU features)

• Testing betas in summer

Process

Perspective

Tools

https://macops.ca/macsysadmin2016

https://macops.ca/macsysadmin2016

OS X macOS builds

OS X macOS builds

• macOS (multiple versions, and choose your format)

• Techs with specific OS requirements, self service imaging

• Open source tools where possible

• Aim for repeatability, don’t repeat yourself

Products and ingredients
• macOS (start from the Installer app)

• Restore image

• Installer package

• NetBoot image (System Image Utility, DeployStudio, Imagr, etc.)

• Bare minimum configuration (contained in packages)

• Certs, basic config, binding

• Local admin user, disabling setup assistant

• Management tool / agent (Munki, Casper, etc.)

Single input, multiple outputs

Munki
createOSXInstallPkg

DeployStudio
/ Imagr

AutoDMG

NetInstall
/ BSDPy

AutoDSNBI

Jenkins
• Master server connected to multiple build

machines (different OS / environments)

• Central configuration, credentials storage,
role-based web access

• Publishing and post-processing of builds

• More in MacDevOps:YVR 2016 presentation:

• http://www.macdevops.ca/presentations/

• pkgbuild and productbuild

 pkgbuild \
 --identifier 'se.macsysadmin.DisableSetupAssistant' \
 --root /path/to/payload/directory/root \
 --version 2016.09.07 \
 'DisableSetupAssistant.pkg'

• Packaging tools / frameworks

• munkipkg (CLI, Python script) - https://github.com/munki/munki-pkg

• Luggage (CLI, make) - https://github.com/unixorn/luggage

• Packages (Cocoa app and CLI) - http://s.sudre.free.fr

http://s.sudre.free.fr

Product archive (distribution format)?

productbuild \
 --package component.pkg \
 output.pkg

Signed packages?

• Signed packages (pkgutil --sign or productbuild --sign)

• Distribution outside your deployment tools

• Installation via MDM + DEP (InstallApplication MDM command)

• Possibly a requirement in the future?

ASR image, macOS package
/Applications/AutoDMG.app/Contents/MacOS/AutoDMG build \  
 --output ~/somewhere \ 
 '/path/to/Install macOS.app' \ 
 disable_setup.pkg \ 
 create_user.pkg

createOSXInstallPkg \  
 --source '/path/to/Install macOS.app' \ 
 --pkg disable_setup.pkg \ 
 --pkg munkitools.pkg \ 
 --pkg munki_config.pkg

NetBoot
• AutoNBI (creates a vanilla or custom NetInstall):

• AutoNBI.py -a -s /path/to/InstallESD.dmg -d . -n MyNBI

• Imagr (vanilla NetInstall with Imagr and dependencies):

• make nbi

• DeployStudio NBI:

• https://github.com/MagerValp/AutoDSNBI (autodsnbi.sh)

https://github.com/MagerValp/AutoDSNBI

Keep the code

• Keep the source together in a source repository (Git, etc.)

• Version your packages

• Share common logic across different scripts/projects

• Remove manual setup steps wherever possible (downloading,
copying large required files, etc.)

Keep the code
➜ tree -L 2 .
.

"## jobs
$ "## common.sh
$ "## create_ds_nbi
$ "## create_osx_install_pkg
$ %## create_restore_image
%## pkgs
 "## build_all_pkgs.sh
 "## create-itadmin
 "## disable-diagnostics
 "## disable-icloud-welcome
 "## disable-setupassistant
 %## munki-kickstart

#!/bin/sh -e
common.sh
exports: CACHED_INSTALLOSX_DMG_PATH
PROPFILE

export CACHE_DIR="$HOME/Library/Caches/OSXBuilds"
if [! -d "${CACHE_DIR}"]; then
 echo "Cache dir doesn't exist, creating at ${CACHE_DIR}"
 mkdir -p "${CACHE_DIR}"
fi

if [-n "${OSX_VERS}"] && [-n "${OSX_BUILD}"]; then
 # cache the installer app
 echo "Caching OS X installer app ${OSX_VERS} build ${OSX_BUILD}"
 mkdir -p "${CACHE_DIR}/InstallOSX"
 export CACHED_INSTALLOSX_DMG_PATH="${CACHE_DIR}/InstallOSX/${OSX_VERS}-${OSX_BUILD}.dmg"
 if [! -e "${CACHED_INSTALLOSX_DMG_PATH}"]; then
 curl \
 --location \
 --output "${CACHED_INSTALLOSX_DMG_PATH}" \
 "http://macsysadmin.se/macos/${OSX_VERS}-${OSX_BUILD}.dmg"
 fi
fi

export PROPFILE="${WORKSPACE}/job.properties"

Jenkins pre-build screen

Save yourself the effort

• Details aren’t complicated but there are a lot of them – this is its own
complexity

• We can rebuild any piece at any macOS version, with the latest
config components

• Go on vacation – someone else can click “build”

Making changes

Lab user environment

• Desktop Macs

• Domain users

• Not administrators

• Usually getting a “fresh” profile after logging in

User Template

rm -rf /System/Library/User\ Template/English.lproj/*

cp -R /Users/it_admin/* /System/Library/User\ Template/English.lproj/

chown -R root:wheel /System/Library/User\ Template/English.lproj

rm -f /System/Library/User\ Template/English.lproj/Library/Keychains/login.keychain

Author: Tim S
Created: 2011/04/23
include /usr/local/share/luggage/luggage.make
TITLE=Cyberduck
REVERSE_DOMAIN=ca.concordia.cda
PACKAGE_VERSION=4.0.2

CD_FILE=Cyberduck-${PACKAGE_VERSION}.zip
CD_URL=http://cyberduck.ch/${CD_FILE}
CD_PREF=ch.sudo.cyberduck.plist

PAYLOAD=\
 unpack-cd \
 pack-cd \
 pack-user-template-plist-${CD_PREF} \
 pack-user-template-appsupport-cd-bookmarks

unpack-cd: l_Applications
 curl -L ${CD_URL} -o ${CD_FILE}

pack-cd: l_Applications
 @sudo ${DITTO} -x -k --noqtn ${CD_FILE} ${WORK_D}/Applications/

pack-user-template-appsupport-cd-bookmarks: l_System_Library_User_Template_Application_Support_Cyberduck_Bookmarks
 # each .duck file is a bookmark - login user and UUID keys can be left
 # empty, login user will use the logged-in user's shortname and UUID will
 # self-generate and rename the .duck file in the user's profile
 @sudo ${CP} cdaftp-bookmark.duck ${USER_TEMPLATE_APPLICATION_SUPPORT}/Cyberduck/Bookmarks

l_System_Library_User_Template_Application_Support_Cyberduck_Bookmarks:

Date: Fri, 06 May 2011 09:40:23
From: Rob Middleton
To: munki-dev@googlegroups.com
Subject: Re: [munki-dev] User Filler Postflight Script

[…],

The generic way this is solved for all possibilities is the use of a
custom LaunchAgent (with plist at /Library/LaunchAgents/).

When any user logs in to the local system their home directory is first
mounted then LaunchAgents run as configured in the security context of
the logged in user with their home directory accessible. In this way you
can script initial install of items or repair of missing items in the
user context.

I no longer use methods which do not work in all circumstances.

Rob.

“In all circumstances”
• Context of one device: does it matter whether…

• A user is already logged in?

• The system or component you’re managing has been run before,
or is running currently?

• The user or device needs to also have some license / entitlement?

• (iOS): Restrictions are set? Devices is supervised and/or DEP?

“In all circumstances”
• Context of the fleet of devices:

• What do you know about how things worked up to now?

• What change would be backwards compatible with every other
element on the system which could be affected?

• Allows for smaller but more frequent, and less invasive, changes

• A change can be not perfect, but still an improvement and with a
way forward

Admin user

• Packaged using CreateUserPkg (Per Olofsson, packaged user
technique by Greg Neagle)

• …not all our systems had this user created by the package, though

• UID 501, 502, 503…

Admin user

• Problem #1: The user package seems like the best way to deploy
and/or update the user, but it depends on the user having a
consistent UID on all machines, which for us it wasn’t.

• Solution: Customize the package script so it can also handle the
situation of the user existing already.

Admin user
#!/bin/bash
preinstall

USER_SHORTNAME=itadmin

uid_stored="$3/private/tmp/.create_user_uid"
user_plist="$3/private/var/db/dslocal/nodes/Default/users/$USER_SHORTNAME.plist"
if [-e "$user_plist"]; then
 DISCOVERED_UID=$(/usr/libexec/PlistBuddy -c 'Print :uid:0' "$user_plist")
 echo "Discovered existing user $USER_SHORTNAME, uid $DISCOVERED_UID"
 echo "Storing uid in $uid_stored.."
 echo "$DISCOVERED_UID" > "$uid_stored"
fi

Admin user
#!/bin/bash
postinstall

USER_SHORTNAME=itadmin

uid_stored="$3/private/tmp/.create_user_uid"
user_plist="$3/private/var/db/dslocal/nodes/Default/users/$USER_SHORTNAME.plist"

(most of postinstall script generated by CreateUserPkg goes here)

Check for our temporary uid that was created if the user already existed
if [-e "$uid_stored"]; then
 preexisting_uid=$(cat $uid_stored)
 /usr/libexec/PlistBuddy -c 'Delete :uid' "$user_plist"
 PlistArrayAdd "$user_plist" uid "$preexisting_uid"
 rm "$uid_stored"
fi
(service restart section of postinstall script)

Admin user

• Problem #2: We don’t want Munki to install this user on every single
machine, but we want to manage the user pkg if it is installed. How
could Munki know when to install our user package?

• Solution: Give Munki the ability to know about local users so we can
determine whether to install this package.

Admin user
<plist version="1.0">
<dict>
[………]
 <key>user_local_list</key>
 <array>
 <string>com.apple.calendarserver</string>
 <string>daemon</string>
 <string>Guest</string>
 <string>nobody</string>
 <string>root</string>
 <string>itadmin</string>
 <string>tim</string>
 </array>
[………]
</dict>
</plist>

ConditionalItems.plist

<plist version="1.0">
<dict>
<key>conditional_items</key>
 <array>
 <dict>
 <key>condition</key>
 <string>'itadmin' IN user_local_list</string>
 <key>managed_installs</key>
 <array>
 <string>itadmin_user</string>
 </array>
 </dict>
 </array>
</dict>
</plist>

Munki manifest

Reality

Toyota Production System (TPS)
• Jidoka (Autonomation)

• “Automation with a human touch”

• Do not allow for defects to make it into the
finished product

• The cost and effort to go out and fix a
problem in a “product” (i.e. a change,
update, etc.) is higher than that spent on
improving quality control Taiichi Ohno

Expecting failure

• Automation can help almost any process by communicating
between different systems and databases

• Internal: LDAP/AD/identity, inventory, JSS, Code42, Zentral

• External: Creative Cloud user licenses, cloud-based ticket / support
tracker

Expecting failure

• Great power, great responsibility

• External dependencies

• Internal edge cases

• Also, bugs

AutoPkg Recipe Repos
➜ ~ autopkg search malware

Name Repo Path
---- ---- ----
KnockKnock.munki.recipe andrewvalentine-recipes KnockKnock/KnockKnock.munki.recipe
MalwarebytesAntiMalware.munki.recipe aysiu-recipes MalwarebytesAntiMalware/MalwarebytesAntiMalware.munki.recipe
VirusBarrier2013.munki.recipe dankeller-recipes VirusBarrier2013/VirusBarrier2013.munki.recipe
VirusBarrierX6.munki.recipe dankeller-recipes VirusBarrierX6/VirusBarrierX6.munki.recipe
KnockKnock.munki.recipe jps3-recipes Objective-See/KnockKnock.munki.recipe
KnockKnock.download.recipe jps3-recipes Objective-See/KnockKnock.download.recipe
RansomWhere.munki.recipe jps3-recipes Objective-See/RansomWhere.munki.recipe
BlockBlock.munki.recipe jps3-recipes Objective-See/BlockBlock.munki.recipe
MalwarebytesAntiMalware.jss.recipe rtrouton-recipes JSS/MalwarebytesAntiMalware.jss.recipe
MalwarebytesAntiMalware.install.recipe rtrouton-recipes MalwarebytesAntiMalware/MalwarebytesAntiMalware.install.recipe
MalwarebytesAntiMalware.download.recipe rtrouton-recipes MalwarebytesAntiMalware/MalwarebytesAntiMalware.download.recipe
MalwarebytesAntiMalware.pkg.recipe rtrouton-recipes MalwarebytesAntiMalware/MalwarebytesAntiMalware.pkg.recipe
DetectX.jss.recipe rtrouton-recipes JSS/DetectX.jss.recipe

AutoPkg Recipe Repos

➜ ~ ./setup_new_recipe_repo.py timsutton/autopkg-recipes

https://github.com/autopkg/autopkg/blob/master/Scripts/setup_new_recipe_repo.py

Here's what's going to happen: the repo at 'timsutton/autopkg-recipes'
will be be cloned and pushed to a new repo at 'autopkg/timsutton-recipes'.
A new team, 'timsutton-recipes', will be created with access to this repo,
and the GitHub user 'timsutton' will be added to it with 'admin' rights.

Type 'yes' to proceed:

AutoPkg Recipe Repos
• Script options, GitHub token validity

• Additional user option required if submitting repo is owned by an org and not a user

• Existence of GitHub user given

• Existence of source GitHub repo

• Existence of proposed new GitHub repo

• Existence of proposed new team

• Check API call to create the repo

• Check API call to create new team

• Check API call to modify default team user assignment, add new team member

• Bare git clone the source repo, mirror push it to the new destination

Script errors
• Bash scripting?

• set -u: exit if any $variables are not set

• set -e: exit shell on any non-zero exit

• set -o pipefail: non-zero exits within pipes return that exit code as
well

• Python / Ruby / Swift / Go / etc?

• Anticipate and handle errors

Tack!

@timsutton

@tvsutton

https://macops.ca/macsysadmin2016

